E T

Virtual Memory

USIVERSITY OF
MEW SOUTH WALES

Virtual Address

Space

* Virtual Memory
— Divided into equal-
sized pages
— A mapping is a
translation between
+ Apage and a frame
« A page and null
— Mappings defined at
runtime
* They can change
— Address space can
have holes
— Process does not
have to be
contiguous in
memory

¥

Virtual Address

Typical Address

Space
[14] S ace Layout
Kernel / 13 p y
2] Stack region is at top,
Stack 111 and can grow down
- * Heap has free space to
Shared ’/ 9 grow up
Libraries B « Textis typically read-only
BSS |7 * Kernel is in a reserved,
(heap) ’\i protected, shared region
5 « 0-th page typically not
Data T\ used, why?
Text "/
THE L '\I h ||\ 3 3

MEW SOUITH WALES

Paging

* Physical Memory
— Divided into
equal-sized
frames

Physical
Address Space

2

7
6
5
4
3
2
1
0

Virtual Address
Space

* A process may
be only partially
resident
— Allows OS to
swap individual
pages to disk

— Saves memory
for infrequently
used data & code

* What happens if
we access non-

L

Page Faults

» Referencing an invalid page triggers a page fault

+ An exception handled by the OS

+ Broadly, two standard page fault types

— lllegal Address (protection error)
« Signal or kill the process
— Page not resident
« Get an empty frame
* Load page from disk
« Update page (translation) table (enter frame #, set valid bit, etc.)
+ Restart the faulting instruction

* Note: Some implementations store disk block numbers

of non-resident pages in the page table (with valid bit
Unset)

ERSITY Cf 5
NI SOUTH WAL e

Programmer’s perspective:
logically present

System’s perspective: Not
mapped, data on disk

resident Physical
memory? 0| Address Space 4
L=

Proc 1 Address

Proc 2 Address

r---== —
Space N ! 18] Space
Currently L baAl ! 14
running ~—~___ ! 1’; : 13|
1
i E : Physical E
: TR Address Spage ﬂ
! 110] 15
! 19| 14 [14
' 18] 3
1
! 17| 15 1
i 16|)
! 5] Disk
1
Memory ' 14
Access i %
1]
B e 0] °

Virtual Address

Space 16|
Page
Table 0|
» Page table for]
resident part of L]
address space L
7]
6 I
5 13
4 ||
3 1]
2 I
1 Physical | 7 |
0 Address Space 7
= —
Proc 1 Address Proc 2 Address
: Space E Space :
- 14| -
10| 113] 15|
L Physical E L
] Address Spade 1]
—— Two (or more) —
— processes —
running the
| | same program [4 |
T and sharing |
t—— the text section =
7] e
2 Page Page 2
_1: Table . Table o~

Shared Pages

» Shared code

— Single copy of code
shared between all
processes executing it

— Code must be “pure”
(re-entrant), i.e. not
self modifying

— Code must appear at
same address in all
processes

» Private code and data
— Each process has own
copy of code and data
— Code and data can
appear anywhere in
the address space

THE UISIVERSITY O 8
MEW SOUTH WALES

other bits]
Caching]

disabled Modified Present/absent
[~ / / -f"f -
% ‘ ‘ ‘ ‘ ‘ Page frame number Z
\\ n\‘ O]
Referenced Protection 7
Page [7]
Table 10|

|0

2

PTE bits
Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
Modified bit
— Also called dirty bit, it indicates the page may have been
modified in memory
Reference bit
— Indicates the page has been accessed
Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
Caching bit
— Use to _indicate processor should bypass the cache when
accessing memory
« Example: to access device registers or memory

F USIVERSITY OF
W OSOLITH WiLES

Page Table Structure -

» Page table is (logically) an array of 5]
frame numbers -
— Index by page number]

» Each page-table entry (PTE) also has

USIVERSITY O
MEW SOUTH WALES

Address Translation

 Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In paging system, translation involves
replace page number with a frame number

THE UISIVERSITY O 12
MEW SOUTH WALES

Virtual Adkiress

Reghter

\/\

Program Paging Mechanism Muin Memory

Figure 8.3 Address Tramslation in o Pagimg System

=

Page Tables

» Page tables are implemented as data structures in main
memory

* Most processes do not use the full 4GB address space
— eg., 0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack

* We need a compact representation that does not waste
space
— But is still very fast to search

+ Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THE UISIVERSITY O 15
NEW SOUTH WALES

E

Page Tables

* Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

THE UISIVERSITY O 14
NEW SOUTH WALES

page tables

Two-level Page

o
Table 5]
=
+ 2nd —fevel -
page tables fiard !
representing 1023 11—
unmapped o 1 T,

Bta 10 0 12 {
pages are nOt PT1 I PT2 | Ottat -15 -
allocated - : e
— Nullin the M n =

top-level
page table ﬁ;
. 1-
¢ : o
; 1w
H 37 sages
o = bl

Two-level Translation

[
"
Virwal Addres
"
10 bk | 10k | 120 [y
T T [

Miset page table

icamiaim 1024 ITES)

'
1

1

1

T

1

1

1

]

L]

'

1

1

]

1

1

1

1

1

]

1
bk S
1024 PTES) 1
1
1
1
1

Program Puging Mechanism Main Memaory

E

E

THE UMIVERSITY O
NEW SOUTH WALES

E

Alternative: Inverted Page Table

Virtal Addres

Page 8
Page Table
Paged Eary Chain
{hash) —
[Frame
Frame § Ot |
Hash Table Tverted Puge Table Real Address
L L T O 0

NEW SOUTH WALES

Alternative: Inverted Page Table

Virtual Address
n hits

Cantrnl

Peneess
Pacge # i Chain

#01 [o]
5 I
Inverted Page Tuble ol Ackirusn
o coley Tor ech
iy vial mnemory framu

THE 19
NEW
_E Figure 8.6_Inverted Page Table Structure

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

« Algorithm
— Compute hash of page number
— Use this to index into inverted page table
— Match the page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

THE UISIVERSITY O 20
MEW SOUTH WALES

Properties of IPTs

» IPT grows with size of RAM, NOT virtual address space

* Frame table is needed anyway (for page replacement,
more later)

* Need a separate data structure for non-resident pages

» Saves a vast amount of space (especially on 64-bit
systems)

» Used in some IBM and HP workstations

THE UISIVERSITY O 21
MEW SOUTH WALES

VM Implementation Issue

* Problem:
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=lIntolerable performance impact!!
+ Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
« May be under OS control (unlike memory cache)

THE UISIVERSITY O 24
MEW SOUTH WALES

TLB operation

— Secondary
Virtusl Addrvss Lain Memory Memmary

[P e [oot |
. 0
X
=)
e — LU o} |
f— * | .
[E)
Fae Tabde L —
M)
! -
TLE mis \
P
[Frame o et |
Beal Addres '-../-“\

Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB
« If matching PTE found (TLB hit), the address is
translated
* Otherwise (TLB miss), the page number is used
to index the process’s page table
— If PT contains a valid entry, reload TLB and restart
— Otherwise, (page fault) check if page is on disk
« If on disk, swap it in
« Otherwise, allocate a new page or raise an exception

THE URNIVERSITY (3 26
MEW SOUTH WALES

TLB properties TLB properties

» TLB may or may not be under OS control

» Page table is (logically) an array of frame — Hardware-loaded TLB
numbers + On miss, hardware performs PT lookup and reloads TLB
. « Example: Pentium
» TLB holds a (recently used) subset of PT entries _ Software-loaded TLB
— Each TLB entry must be identified (tagged) with the + On miss, hardware generates a TLB miss exception, and
page # it translates exception handler reloads TLB
— Access is by associative lookup: : E_Xample: N_”PS .
« All TLB entries’ tags are concurrently compared to the page # * TLB size: typlca"y 64-128 entries
« TLB is associative (or content-addressable) memory » Can have separate TLBs for instruction fetch

and data access

* TLBs can also be used with inverted page tables
(and others)

THE UNIVERSITY O 27 THE UISIVERSITY O 28
MNEW SOUITH WALE MEW SOUTH WALES

page # | frame # |V | W

TLB and context switching TLB effect

» TLB is a shared piece of hardware

» Page tables are per-process (address space) * Without TLB
« TLB entries are process-specific — Average number of physical memory
— On context switch need to flush the TLB (invalidate references per virtual reference
all entries) =2
* high context-switching overhead (Intel x86) « With TLB (assume 99% hit ratio)

— or tag entries with address-space ID (ASID) — Average number of physical memory
+ called a tagged TLB references per virtual reference
« used (in some form) on all modern architectures

-) =.99*1+0.01*2
» TLB entry: ASID, page #, frame #, valid and write-protect - 101
bits -

THE URNIVERSITY (3 29 THE URNIVERSITY (3 30
MEW SOUTH WALES MEW SOUTH WALES

Simplified Components of VM

MIPS R3000 TLB
Virtual Address SySte m Page Tables for 3 kil 12 n 6 5
Spaces (3 processes) y processes Frame Table
N EE [Asi E
@?é\\\;@ v I “ EntryHi Register (TLB key fields)
«\:B()@“
CPU K] 12 n 10 9 8 7 0
2 |3 TLB | PPN [v Jo Jv e o

EntryLo Reqister (TLB data fields)
Frame Pool * N = Not cacheable + V=valid bit

+ D = Dirty = Write protect ~ * 64 TLB entries

_ . « Accessed via software through
* G = Global (ignore ASID Cooprocessor 0 registers
e in lookup) — EntryHi and EntryLo
Physical Memory

THE URNIVERSITY (3 31 THE URNIVERSITY (3 32
MEW SOUTH WALES MEW SOUTH WALES

OXFFFFFFFF

R3000 Address
Space Layout 00000

« kuseg:
— 2gigabytes 0xA0000000
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode 0x80000000
accessible
— Page size is 4K

E R 0x00000000

kuseg

R3000 Address

Space Layout

— Switching processes
switches the translation

OxEfEEFFFEF

R3000 Address

Space Layout o000
« ksegO:

— 512 megabytes 0xA0000000
— Fixed translation window to
physical memory
+ 0x80000000 - OxOfffffff virtual =

(page table) for kuseg
Proc 1 Proc 2
kuseg kuseg

OXFFFFFFFF

0xC000000

0xA000000

0x80000000

0x00000000

Proc 3
kuseg

R3000 Address

Space Layout o000
* kseg2:

— 1024 megabytes 0xA0000000
— TLB translated (mapped)
— Cacheable
« Depending on the ‘N’-bit
— Only kernel-mode accessible

— Can be used to store the virtual
linear array page table

0x80000000

THE USIVERSITY OF
MEW SOUTH WALE 0x00000000

0x00000000 - 0x1fffffff physical 0x80000900
* TLB not used
— Cacheable
— Only kernel-mode accessible
— Usually where the kernel code is
placed kuseg
THE LIsIVERSITY OF Physical Memory
NEW SOUITH WALE 000000000
OXEEEEEEEE

kuseg

R3000 Address
Space Layout

kseg1:

— 512 megabytes

— Fixed translation window to

physical memory
« 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

« TLB not used

— NOT cacheable

— Only kernel-mode accessible

— Where devices are accessed (and

boot ROM)

OxfEfEfFFFF

0xC0000000

0x800C

-E THE UNIVERSITY O Physical Memory
NEW SOUTH WALES

0x00000000

kuseg

