¥

Memory Management

THE UISIVERSITY O 1
NEW SOUTH WALES

Process

* One or more threads of execution

» Resources required for execution
— Memory (RAM)
« Program code (“text”)
« Data (initialised, uninitialised, stack)
« Buffers held in the kernel on behalf of the process
— Others
« CPU time
« Files, disk space, printers, etc.

¥

Some Goals of an Operating
System

Maximise memory utilisation
Maximise CPU utilization
Minimise response time
Prioritise “important” processes

Note: Conflicting goals = tradeoffs

— E.g. maximising CPU utilisation (by running
many processes) increases system response
time.

THE UISIVERSITY O 3
NEW SOUTH WALES

THE UISIVERSITY O 2
NEW SOUTH WALES

Memory Management

» Keeps track of what memory is in use and
what memory is free

* Allocates free memory to process when
needed
— And deallocates it when they don’t

* Manages the transfer of memory between
RAM and disk.

¥

* Ideally, programmers
want memory that is
— Fast
— Large
— Nonvolatile

* Not possible

* Memory manager
coordinates how
memory hierarchy is
used.
— Focus usually on

Memory Hierarchy

THE UISIVERSITY O 4
NEW SOUTH WALES

RAM & Disk

|—.

THE UMIVERSITY O
NEW SOUTH WALES

Memory Management

» Two broad classes of memory
management systems
— Those that transfer processes to and from
disk during execution.
« Called swapping or paging
— Those that don’t
« Simple
« Might find this scheme in an embedded device,
phone, smartcard, or PDA.

THE URNIVERSITY (3 6
NEW SOUTH WALES

Basic Memory Management
Monoprogramming without Swapping or Paging

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
pregram User
program
User
program
Operating Operating
system in system in
RAM RAM
0 4] 1]

(a) (b) ()

Three simple ways of organizing memory
_E 4 oem.@N operating system with one user process

.. S
NEW SOUTH WaALTE

Idea

« Subdivide memory and run more than one
process at once!ll!
— Multiprogramming, Multitasking

THE UISIVERSITY O 9
NEW SOUTH WALES

Problem: How to divide memo

* One approach
— divide memory into fixed —_—
equal-sized partitions
— Any process <= partition
size can be loaded into R
any partition

THE USIVERSITY O
NEW SOUTH WALES R

Monoprogramming

* Okay if
— Only have one thing to do

— Memory available approximately equates to
memory required

» Otherwise,
— Poor CPU utilisation in the presence of I/O
waiting
— Poor memory utilisation with a varied job mix

THE UISIVERSITY O 8
NEW SOUTH WALES

Modeling Multiprogramming

20% 11O wait

E 100
3 :
8 a0 |- 50% /0 wait
£
g W= 80% /O wait
ﬁ 40
E]
Z =20
[§]

(I I NN N NN N I N N |

0 1 2 3 4 5 & 7 8 9 10
Degree of multiprogramming

CPU utilization as a function of number of processes in
N SOUTH WAL memory

E

Simple MM: Fixed, equal-sized
partitions —
* Any unused space in the
partition is wasted -
— Called internal
fragmentation
* Processes smaller than —
main memory, but larger
than a partition cannot
run.

THE UMIVERSITY O
NEW SOUTH WALES

Simple MM: Fixed, variable-sized

partitions
Multiple
Input qusues 800K
* Multiple Queues: OO Partons |
— Place process in queue for smallest

partition that it fits in. Partition 3
400K

O Partition 2
200K

CHTH—{ Partition 1
ey 100K

system |,

[C]

THE UISIVERSITY O 13
MEW SOUTH WALES

* |Issue Maltple
” gt quiLes 500K
— Some partitions may CH Partiion 4
. TO0K
be idle
« Small jobs available, Partition 3
but only large partition
free 400K
[rartition 2
200K
CHH A Partition 1
Oparating ook
system |,

(a)

» Single queue, search

for any jobs that fits
+ Small jobs in large Eiron S
partition if necessary
— Increases internal ol e Partiben 3
memory fragmentation
Partition 2
Partition 1
Operating
system

(&)

THE UISIVERSITY O 15
MEW SOUTH WALES

THE UISIVERSITY O 14
MEW SOUTH WALES

Fixed Partition Summary

» Simple

» Easy to implement

» Poor memory utilisation
— Due to internal fragmentation

» Used on OS/360 operating system
(OS/MFT)
— Old mainframe batch system

« Still applicable for simple embedded
systems

Dynamic Partitioning

+ Partitions are of variable length
* Process is allocated exactly what it needs
— Assume a process knows what it needs

THE UISIVERSITY O 17
MEW SOUTH WALES

THE UISIVERSITY O 16
MEW SOUTH WALES

[OpermmE] [OperatmE | [CTperatmE | [OiperatimE]
Sysiem Sysiem Sysiem System
Process 1 b 20M Process 1 }z(m Process 1
S6M Process 2 %HM Process 2
3eM
2M Boeey
(@) () fc) (d)

Figure 7.4 The Effect of Dynamic Partitioning

Oiperatig Oiperating Operatig Oiperating
System System System System
Process 2 146
Process | 20M Process | 20M 20m
= e
1AM Process 4 }- BM Process 4 .{-&M Process 4 | = 5M
Eoem Eam Eoem
Process 3 } 1EM Process 3 1EM Process 3 LEM Process 3 &M
Fam Fam M Fam
i) in])

Figure 7.4 The Effect of Dynamic Partitioning

Recap: Fragmentation

« External Fragmentation:
— The space wasted external to the allocated memory
regions.
— Memory space exists to satisfy a request, but it is
unusable as it is not contiguous.
* Internal Fragmentation:
— The space wasted internal to the allocated memory
regions.
— allocated memory may be slightly larger than

requested memory; this size difference is wasted
memory internal to a partition.

THE UISIVERSITY O 21
MEW SOUTH WALES

Dynamic Partitioning

* In previous diagram
— We have 16 meg free in total, but it can’t be used to
run any more processes requiring > 6 meg as it is
fragmented
— Called external fragmentation
* We end up with unusable holes
» Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory together in
one large block.

— Compaction is possible only if relocation is dynamic, and is done
at execution time.

THE UISIVERSITY O 20
MEW SOUTH WALES

Dynamic Partition Allocation
Algorithms

» Basic Requirements

— Quickly locate a free partition satisfying the
request

— Minimise external fragmentation

— Efficiently support merging two adjacent free
partitions into a larger partition

Classic Approach

* Represent available memory as a linked
list of available “holes”.
— Base, size
— Kept in order of increasing address

« Simplifies merging of adjacent holes into larger
holes.

' Size

Size Size Size
Link / Link | Link = Link

THE URNIVERSITY (3 23
MEW SOUTH WALES

THE UISIVERSITY O 22
MEW SOUTH WALES

Coalescing Free Partitions with Linked
Lists

Before X terminates

% bacomes
| x [8 |

becomes

After X terminates

NN K ks

(d) %m becomes

Four neighbor combinations for the terminating
process X

THE UMIVERSITY O
MEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

+ First-fit algorithm
— Scan the list for the first entry that fits
« If greater in size, break it into an allocated and free part
« Intent: Minimise amount of searching performed
— Generally results in many processes loaded, and
holes at the front end of memory that must be
searched over when trying to find a free block.
— May have lots of unusable holes at the beginning.
« External fragmentation
— Tends to preserve larger blocks at the end of memory

Add |Address| /Address| Add
' Size Size Size Size
Link Link Link Link

THE UISIVERSITY O 25
MEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

* Next-fit
— Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.
« Spread allocation more uniformly over entire memory

— More often allocates a block of memory at the end of memory
where the largest block is found

* The largest block of memory is broken up into smaller blocks

Address| Add Addi Address|
——— Size /' Size / Size Size
Link Link Link / Link

Dynamic Partitioning Placement
Algorithm

 Best-fit algorithm

— Chooses the block that is closest in size to the
request

— Poor performer
* Has to search complete list

« Since smallest block is chosen for a process, the
smallest amount of external fragmentation is left
— Create lots of unusable holes

Size Size Size Size
Link / Link] Link = Link

THE UISIVERSITY O 27
MEW SOUTH WALES

B —

THE UISIVERSITY O 26
MEW SOUTH WALES

Dynamic Partitioning Placement
Algorithm

» Worst-fit algorithm
— Chooses the block that is largest in size
(worst-fit)
« Idea is to leave a usable fragment left over
— Poor performer
« Has to search complete list
« Still leaves many unusable fragments

4di Add Add) 4di

— Size /v Size /' Size / Size

Link Link Link Link

Y i
[[t 1
et it
M
M
) Bekors b Al

Figure 7.5 Example Memory Configuration Before
and After Allocation of 16 Mbyte Block

THE UISIVERSITY O 28
MEW SOUTH WALES

Dynamic Partition Allocation
Algorithm

* Summary

— First-fit and next-fit are generally better than
the others and easiest to implement

* Note: Used rarely these days
— Typical in-kernel allocators used are lazy
buddy, and slab allocators

* Might go through these later in session (or in
extended)

THE URNIVERSITY (3 30
MEW SOUTH WALES

E

Compaction

We can reduce
external fragmentation
by compaction
— Only if we can relocate
running programs

— Generally requires
hardware support

THE UMIVERSITY O

II

MEW SOUTH WALES

Issues with Dynamic
Partitioning
* We have ignored

— Relocation

« How does a process run in
different locations in memory?

— Protection

« How do we prevent processes
interfering with each other

Example Logical Address-Space
Layout g ! iy posi e

o program
- Logical] :] Branch
addresses refer =r S
to specific Increasing
locations within e l

the program
« Once running,
these address i
must refer to real
physical memory
* When are logical Stack
addresses bound

Reference|
to data

Current top >
of stack

OXFFFF

to physical?

E

THE UMIVERSITY O
MEW SOUTH WALES

THE UMIVERSITY O
MEW SOUTH WALES

Figure 7.0 Addressing Requi for o P

When are memory =)
addresses bound? 4

« Compile/link time
— Compiler/Linker binds the
addresses
— Must know “run” location at
compile time
— Recompile if location changes
* Load time
— Compiler generates relocatable
code
— Loader binds the addresses at
load time
* Runtime

— Logical compile-time addresses
translated to physical addresses
by special hardware.

E

Hardware Support for Runtime
Binding and Protections

» For process B to run using logical
addresses
— Need to add an appropriate offset to its
logical addresses
« Achieve relocation
* Protect memory “lower” than B imit I
— Must limit the maximum logical address B
can generate
« Protect memory “higher” than B

base

THE UMIVERSITY O
MEW SOUTH WALES 0x0000

L

Hardware Support for Relocation and
Limit Registers

Bmit relocation
registar register
logical physical
address yes address
CPU > < \:/ memory
no
trap; addressing emor

THE URNIVERSITY (3 36
WEW SOUTH WALES

Base and Limit Registers

OXFFFF

base=0x8000
limit = 0x2000

» Also called
— Base and bound registers
— Relocation and limit registers
+ Base and limit registers
— Restrict and relocate the currently (ﬁgjm base
active process 0xa000 ¥| X000

— Base and limit registers must be
changed at
* Load time
+ Relocation (compaction time)
» On a context switch

THE UMIVERSITY O
E MEW SOUTH WALES 0x0000

Base and Limit Registers

* Cons

— Physical memory allocation must still be
contiguous

— The entire process must be in memory

— Do not support partial sharing of address
spaces

THE UISIVERSITY O 39
WEW SOUTH WALES

Swapping

« A process can be swapped temporarily out of memory to
a backing store, and then brought back into memory for
continued execution.

« Backing store — fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

« Can prioritize — lower-priority process is swapped out so
higher-priority process can be loaded and executed.

« Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped.

— slow

THE UISIVERSITY O 41
WEW SOUTH WALES

THE UMIVERSITY O
MEW SOUTH WALES

Base and Limit Registers

OxFFFF

base=0x4000
limit = 0x3000

» Also called
— Base and bound registers
— Relocation and limit registers
+ Base and limit registers
— Restrict and relocate the currently
active process
— Base and limit registers must be
changed at
* Load time
« Relocation (compaction time)
» On a context switch

THE UMIVERSITY O
MEW SOUTH WALES 0x0000

Timesharing

OXFFFF

» Thus far, we have a system
suitable for a batch system
— Limited number of dynamically
allocated processes
« Enough to keep CPU utilised
— Relocated at runtime
— Protected from each other

* But what about timesharing?

— We need more than just a small
number of processes running at
once

E

Schematic View of Swapping

main memory

THE UISIVERSITY O 42
WEW SOUTH WALES

So far we have assumed a
process is smaller than memory

* What can we do if a process is larger than
main memory?

THE UISIVERSITY O 43
NEW SOUTH WALES

Overlays

» Keep in memory only those instructions
and data that are needed at any given
time.

* Implemented by user, no special support
needed from operating system

» Programming design of overlay structure
is complex

THE UISIVERSITY O 44
NEW SOUTH WALES

Overlays for a Two-Pass Assembler

symbal 20K
tabie
common
30K
roabngs.
ovarlay
Hehier 10K
TOK piss 1 pass 2 BOK

THE UISIVERSITY O 45
NEW SOUTH WALES

Virtual Memory

» Developed to address the issues identified with
the simple schemes covered thus far.

» Two classic variants
— Paging
— Segmentation

» Paging is now the dominant one of the two
» Some architectures support hybrids of the two
schemes

Virtual Memory - Paging

+ Partition physical memory into small i
equal sized chunks pbared
— Called frames 0K -BAK X
+ Divide each process’s virtual (logical) seK-60K [X | b Virtual page
address space into same size chunks seksekl x|
— Called pages
: ’ ask-szk | X
— Virtual memory addresses consist of a P
page number and offset within the page
+ OS maintains a page table A0K-MK] X Physical
— contains the frame location for each page *F<-40%| 5 memary
— Used to translate each virtual address to 32-36K | % it
physical address 2BK-32K | X 28K-32K
— The relation between 24K-28K | X 24K-28K
virtual addresses and physical memory spi.zak [~ 2 20K-24K
addresses is given by page table
B A 16K-20K 4 16K-208
+ Process’s physical memory does not szcask o Y My
have to be contiguous
BK-12K] BK-12K
awek| 1 418K
s R

THE USNIVERSITY O OK-3K :\OKdK
MEW SOLITH WALES \
Page framd

THE UISIVERSITY O 46
NEW SOUTH WALES

Frame njain memory Main memory Main memory
humber

L o AL o AD

1 1 Al 1 Al

2 z A2 2 A2

a 3 Al 3 AJ

4 4 Ll SRRRER

5 5 5 AN A

6 6 6 RTINS

7 7 7

8 8 B8

b 92 9

10 10 10

11 11 1

12 1z 12

13 13 13

14 14 14

(a) Fifteen Available Frames (b) Load Process A () Load Process B

Figure 7.9 Assignment of Process Pages to Free Frames

RMaln memory RMaln memory Rfaln memory

0 A0 0 A0 0 A0

1 Ad 1 Al 1 A

2 A2 2 A2 2 A2

3 A3 3 Ad 3 Al

4 PN 4 4 D

H TR s H D1

6 12 6 6 D2

7 v 7 W 7 [

8 C.1 8 C.1 8 C.1

9 C 27 LR A 9 ¢ 20

10 3 10 3 10 C23

1 1 11 D3

12 12 12 D4

13 13 12

14 14 14

() Loud Process C (€) Swapout B () Load Process D
D 0] — ol 7 0| 4 }L{
L[1 1 — 18 1 S 14
P | 2 - — 2l 9 20 6 Free framg
B[3 Process B 310 311 list
Process A page table Process C 412
page table page table Process D
page table

NEW SOUTH WALES

Memory Management Unit

The CPU sends virtual
cPU addresses to the MMU

eruln /
/ Memory M Disk
|- managemant emary cantroller
unit

3 1.

The MMU sends physical
addresses to the memaory

The position and function of the MMU

THE UISIVERSITY O 52

¥

Paging

No external fragmentation

Small internal fragmentation

Allows sharing by mapping several pages
to the same frame

Abstracts physical organisation

— Programmer only deal with virtual addresses
Minimal support for logical organisation

— Each unit is one or more pages

THE UISIVERSITY O 51

MEW SOUTH WALE

¥

Virtual Memory - Segmentation

Memory-management scheme

that supports user’s view of

memory.

A program is a collection of

segments. A segmentis a

logical unit such as: ik

— main program, procedure,
function, method, object, local
variables, global variables, Sqrt
common block, stack, symbol =
table, arrays program

subrouting stack

THE UMIVERSITY O
NEW SOUTH WALES

logical address space

¥

MMU Operation

— t _ Gagarng
i 7 el
[00E0000000E008E vt
i e
18 ma o]
Assume for now that
the page table is
contained wholly in
registers within the
MMU
Inczmng
ik
adaens
156

Internal operation of MMU with 16 4 KB pages

THE UISIVERSITY O 53
NEW SOUTH WALES

¥

mentation

1

Logical View of Se

4

physical memory space

user space

THE URNIVERSITY (3 55
NEW SOUTH WALES

Segmentation Architecture

» Logical address consists of a two tuple: <segment-
number, offset>,
— ldentifies segment and address with segment

» Segment table — each table entry has:

— base — contains the starting physical address where the
segments reside in memory.

— limit — specifies the length of the segment.

« Segment-table base register (STBR) points to the
segment table’s location in memory.
« Segment-table length register (STLR) indicates number
of segments used by a program;
segment number s is legal if s < STLR.

THE UISIVERSITY O 56
MEW SOUTH WALES

Segmentation Hardware

no

trap; addressing emor physical mamary

Example of Segmentation

subrouting stack ‘
1400+
sogment 3 segmant 4
2400 ¢
symbol
segment 0 tabie
3 imat | base
‘sogmant 4 0] 1000 | 1400
2 - 1| 400 | 6300 | 32007
main 2| 400 | 4300
progeam 3| 1100 | 3200
4| 1000 | 4700 4
. segmontiable gao0l !
segment 1 segment 2 3
PN |
logical address space segment 4
5700 i
300 ¢ 1
. segment 1
s oot || 55
. = physical memary

THE UISIVERSITY O 57
MEW SOUTH WALES

Segmentation Architecture

* Protection. With each entry in segment table
associate:

— validation bit = 0 = illegal segment
— read/write/execute privileges

» Protection bits associated with segments; code
sharing occurs at segment level.

» Since segments vary in length, memory
allocation is a dynamic partition-allocation
problem.

+ A segmentation example is shown in the
following diagram

s
sergrment 0
43083
a1 S| base
o 20 | 43062
- 4425 | gaa addor
sogment labie
process P, 2
o Basn |
P —. data 1
Feoome Tarmaf
oo |
dala 2
preeey
fr——]
bt | basa 5 -
el o[25 | 43062 iyysical mamory
wagerann 1 v |_sas0 | sooa
sagmort latia
THE USIVERSITY O process Py 60
MEW SOUTH WALES wokialmiriacy

THE UISIVERSITY O 59
MEW SOUTH WALES

Segmentation Architecture

* Relocation.
— dynamic
= by segment table

» Sharing.
— shared segments
= same physical backing multiple segments
= ideally, same segment number
+ Allocation.
— First/next/best fit
= external fragmentation

THE URNIVERSITY (3 61
MEW SOUTH WALES

10

Segmentation

Consideration Pagi Sagmantation

Nwad the programmar be seare | Mo Yas

that this technique is being used?

How masry linear addiess 1 Mary

spaces are there?

Can the total address space Yes Yes

axceod the size of physical

maemary?

Can procodures and data ba No Yas

distinguished and separately

protactad?

Can tables whoso size fuctuates | Mo Yas

be accommodated sasly?

I8 sharing of procadunes. o Yes

batwoon usors faciitatod?

Why was this techniquo Togetalwge | Toalow programs

invented? lingar acdress and data 1o be broken
space without | up into
haring fo buy independent address.
more physical | spaces and ko aid
memory shaving and

protection

_E o COmparison of paging and segmentation ,

