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Major Requirements of an
Operating System
* Interleave the execution of several
processes to maximize processor

utilization while providing reasonable
response time

* Allocate resources to processes

» Support interprocess communication and
user creation of processes
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Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads
» Threads:
— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process
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Logical Execution Trace
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Summary: The Process Model

Ona program counter

Four program counters
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* Multiprogramming of four programs

» Conceptual model of 4 independent, sequential
processes (with a single thread each)

_Eg._ Only one program active at any instant

Process and thread models of
selected OSes

+ Single process, single thread
— MSDOS
+ Single process, multiple threads
— 08/161 as distributed
» Multiple processes, single thread
— Traditional unix
» Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000
Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)
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Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)
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Process Creation

Principal events that cause process creation
1. System initialization
« Foreground processes (interactive programs)
« Background processes
Email server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process
* New login shell for an incoming telnet connection

3. User request to create a new process

4. Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.
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Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

» Possible process/thread states
— running
— blocked
— ready

« Transitions between states shown
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Some Transition Causing

Events

Running >Ready

—Voluntary Yield ()

— End of timeslice
Running >Blocked

— Waiting for input

« File, network,
— Waiting for a timer (alarm signal)
— Waiting for a resource to become available
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The Ready Queue

Queue

Enter Dispatch ExIt

Pause

(b) Queulng diagram
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Dispatcher

» Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
» Has to choose a Ready process to run
— How?

— ltis inefficient to search through all
processes
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What about blocked processes?

» When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

Using Two Queues
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Ready Queue Release
Admit Dispatch
—_— Processor
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Blocked Queue :
Event Event Walt

‘Occurs
(a) Single blocked queue
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{b) Multiple blocked queues




Implementation of Processes

» A processes’ information is
stored in a process control block

(PCB) EZ

* The PCBs form a process table P5

— Sometimes the kernel stack for P4

each process is in the PCB P3

— Sometimes some process info is P2

on the kernel stack P1

« E.g. registers in the trapframe in PO
0S/161
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Implementation of Processes

Process management Memory File

Registers Paintar to text segment Root directory
Program counter Pointer to data segment | Working directory
Program status word Painter to stack segment | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

Threads
The Thread Model

_E . \WI“E\_)I(gmpIe fields of a process table entry
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Process 1 Procass 1 Process 1 Process.
\ 1 | i
Usar
space
Thread Thread
Kernel
space { Kernel Karnel
(a) (&)

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

* |tems shared by all threads in a process
* Items private to each thread

The Thread Model

Thread 2

Thread 1 T"':" 3

2 2 ? //Pro:ess
mors |\ B f

stack

{— Thread 3's stack

Kamel

Each thread has its own stack
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Thread Model

» Local variables are per thread
— Allocated on the stack

» Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

» Dynamically allocated memory (malloc) can be
global or local
— Program defined
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Thread Usage

=
Kernel

Kayboard Disk

A word processor with three threads
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Thread Usage

while (TRUE) { while (TRUE) {
get_next_request{Sbuf); wail_for_work(&buf)
handoff_work{&buf); look _for_page_in_cache{&buf, &page);
} if (page_nol_in_cache(&page)
read_page_from_disk(8buf, &page);
return_page({&page);
}

(a) o)

* Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread
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Thread Usage

Web server process

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Karnel space

MNetwork
connection

A multithreaded Web server
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Summarising “Why Threads?”

» Simpler to program than a state machine

+ Less resources are associated with them than a
complete process
— Cheaper to create and destroy
— Shares resources (especially memory) between them

» Performance: Threads waiting for I/O can be overlapped
with computing threads
— Note if all threads are compute bound, then there is no

performance improvement (on a uniprocessor)

» Threads can take advantage of the parallelism available

on machines with more than one CPU (multiprocessor)
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Thread Usage

 Model | Characteristics
Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
 Finite-state machine | Parallelism, nonblocking system calls, interrupts |

Three ways to construct a server
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Implementing Threads in User
Space

Process Thread

\
-~ / Kerne \ \

I
Hun-lf:'ns Thread Process
system table table
A user-level threads package
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User-level Threads

User-Level Threads
* Implementation at user-level Pros

— User-level Thread Control BIQCk (TCB), ready — Thread management and switching at user level is
queue, blocked queue, and dispatcher much faster than doing it in kernel level
K Ih k led f the th ds (it « No need to trap into kernel and back to switch

—Kernel has nq nowledge of the threads (i — Dispatcher algorithm can be tuned to the application
only sees a single process) « E.g. use priorities

— If a thread blocks waiting for a resource held - &?ga%e;wgr'ee;“emed on any OS (thread or non-
by another thread, its state is save and the

dispatcher switches to another ready thread

— Can easily support massive numbers of threads on a
— Thread management (create, exit, yield, wait)

per-application basis
« Use normal application virtual memory

* Kernel melrglorgj rf?ore contratined. Pi{]ficul(tj tof eff(ijo;?ntly
H i H H support wildly differing numbers of threads for different
are implemented in a runtime support library appiications.
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User-level Threads

User-Level Threads
+ Cons
. . » Cons
— Threads have to yield() manually (no timer )
. . — If a thread makes a blocking system call (or takes a page fault),
interrupt delivery to user-level) the process (and all the internal threads) blocks
» Co-operative multithreading + Can't overlap I/O with computation
— A single poorly design/implemented thread can + Canuse wrappers as a work around
monopolise the available CPU time - Example: wrap the read () call
R . — Use select () to test if read system call would block
» There are work-arounds (e.g. a timer signal per

» select() then read()

second to enable pre-emptive multithreading), they » Only call read () if it won't block
are course grain and k|udgey » Otherwise schedule another thread
. . — Wrapper requires 2 system calls instead of one
— Does not take adVantage of mUltIple CPUs (In » Wrapperslfrg needed for environments doing lots of blocking
H 1 H system calls?
rea“ty’ we still have .a Smgle threaded process « Can change to kernel to support non-blocking system call
as far as the kernel is concerned)

— Lose “on any system” advantage, page faults still a problem.
E THE USIVERSITY OF
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Implementing Threads in the Kernel Kernel Threads
rocess Thr/ead

» Threads are implemented in the kernel
— TCBs are stored in the kernel

« A subset of information in a traditional PCB
— The subset related to execution context
* TCBs have a PCB associated with them

— Resources associated with the group of threads (the
Kernel E % process)
Fi I .
I — Thread management calls are implemented
Process Thread
e as system calls
« E.g. create, wait, exit
A threads package managed by the kernel
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Kernel Threads

+ Cons
— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.
* More expensive than user-level equivalent
* Pros
— Preemptive multithreading
— Parallelism
« Can overlap blocking 1/0 with computation
» Can take advantage of a multiprocessor
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Multiprogramming Implementation

1. Hardware stacks program counter, efc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4, Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. A bly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
interrupt occurs — a thread/context switch
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Context Switch

» Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

=08 must save all state that affects the thread
» This state is called the thread context

» Switching between threads consequently results
in a context switch.
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Hybrid Schemes

Multiple user threads
on a kernel thread

\_ ]

User
space

Kernel
Kernel <— Kernel thread space
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Thread Switch

« A switch between threads can happen any time
the OS is invoked
— On a system call
« Mandatory if system call blocks or on exit();
— On an exception
« Mandatory if offender is killed
— On an interrupt

« Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements
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Simplified
Explicit
" | Thread Switch

<+ thread _switch(b,a)

{

Thread a Thread b

thread switch(a,b) ———»

{

}

thread_switch(a,b) ———» }

'
{ '
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Example Context Switch

* Running in user mode, SP points to user-
level activation stack

Representation of

Kernel SP

Kernel Stack
(Memory) \
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Example Context Switch

» We push a trapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

Kernel SP

/
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Example Context Switch
» The kernel decides to perform a context switch

— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

/ Kernel SP

THE UISIVERSITY O 47
NEW SOUTH WALES

Example Context Switch

» Take an exception, syscall, or interrupt,
and we switch to the kernel stack

Kernel SR

AN
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Example Context Switch

» Call ‘C’ code to process syscall, exception,
or interrupt
—Results in a ‘C’ activation stack building up

Kernel SP

/
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Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

Kernel

stacks of Kernel SP
other

threads

[ IKemel State['C’ activation stack] _trapframe |
[ IKemel State['C’ activation stack] _trapframe |
48
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Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.
— Thus we have switched contexts

Kernel SP
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Example Context Switch

» Load the target thread’s previous context,
and return to C

Kernel SP
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Example Context Switch

» The C continues and (in this example)
returns to user mode.

Kernel SP
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Example Context Switch

* The user-level context is restored

Kernel SP
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Example Context Switch

* The user-level SP is restored

Kernel SP
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The Interesting Part of a Thread
Switch

* What does the “push kernel state” part
do???

Kernel SP
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0S/161 md_switch

md_switch (struct pcb *old, struct pcb *nu)

{
if (old==nu) {
return;
}
/*

* Note: we don't need to switch curspl, because splhigh()
* should always be in effect when we get here and when we
* leave here.

*/

old->pcb_kstack = curkstack;
old->pcb_ini upt = in_i pt;

curkstack = nu->pcb_kstack;
in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

i )

0OS/161 mips_switch

mips_switch:

The order must match arch/mips/include/switchframe.h.

/*
* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

.

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:

-

* s0-s8

* gp, ra

*

.

*/

/* Allocate stack space for saving 11 registers. 11%4 = 44 */
addi sp, sp, -44

0OS/161 mips_switch

/* save the registers */
sw  ra, 40(sp)
sw  gp, 36(sp)
sw  s8, 32(sp)
sw  s7, 28(sp)
sw  s6, 24(sp)
sw  s5, 20(sp)
sw 4, 16(sp)
sw  s3, 12(sp)
sw  s2, 8(sp)
sw  sl, 4(sp)
sw  s0, 0(sp)

/* Store the old stack pointer in the old pcb */
sw  sp, 0(a0)
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0S/161 mips_switch

/* Get the new stack pointer from the new pcb */
1w sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w s0, 0(sp)
1w s1, 4(sp)
v s2, 8(sp)
1w s3, 12(sp)
1w 54, 16(sp)
1w s5, 20(sp)
1w s6, 24(sp)
it s7, 28(sp)
1w s8, 32(sp)
b gp, 36(sp)
1w ra, 40(sp)
nop /* delay slot for load */

/* and return. */
3 ra

addi  sp, sp, 44
.end mips_switch

/% in delay slot */

Thread a Theadb | Revisiting
semsmen ——— ¢ Thread Switch
L
y o —————nips_pwitch(b,a)
[
v 3
mips switch(a,b) ——» } i

{
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