Processes and Threads

THE UISIVERSITY O 1
MEW SOUTH WALES

Major Requirements of an
Operating System
* Interleave the execution of several
processes to maximize processor

utilization while providing reasonable
response time

* Allocate resources to processes

» Support interprocess communication and
user creation of processes

THE UISIVERSITY O 2
MEW SOUTH WALES

Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads
» Threads:
— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process

THE UISIVERSITY O 3
MEW SOUTH WALES

Addres hain Memory Program Coun
v HOOM)
100
Dispatcher
SOMM0
Execution snapshot Process A
of three single-
L
threaded processes
(No Virtual Process B
Memory) 200
Process C
Figure 3.1 of Example E ion (Figure

ol Dpvstrypetion Cyele 13

Logical Execution Trace

5000 BOO0D 12000
5001 BO01 12001
5002 BO0Z 12002
5003 BOO3 12003
5004 120004
5005 12005
5006 12006
007 12007
5008 12008
5009 12009
5010 12010
5011 12011
{a} Trace of Process A (b} Trace of Process B (e} Trace of Process C

5000 = Starting address of program of Provess A
8000 = Starting address Process B

Sticti fRrocess C

12000 = Statizyg addre

Figure 3.2 Traces of Procesves of Figure 3.1

p Timn ot
n
Combined Traces a
(Actual CPU b
Instructions) -
»
&N
What are the

shaded sections?

Tims st

Figure 33 Combised Trace of Procesar af Figurr 31

Summary: The Process Model

Ona program counter

Four program counters
A

N,
AY

Procass
switch ~

) L)
o

{a) (b} {e)

* Multiprogramming of four programs

» Conceptual model of 4 independent, sequential
processes (with a single thread each)

Eg. Only one program active at any instant

Process and thread models of
selected OSes

+ Single process, single thread
— MSDOS
+ Single process, multiple threads
— 08/161 as distributed
» Multiple processes, single thread
— Traditional unix
» Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000
Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

HE USIVERSITY O
MEW SOUTH WALES

Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)

THE UISIVERSITY O 1"
MEW SOUTH WALES

5

o o
ome thread

¢

e s
mulliple thremds

multiphe processes
one Ihread per proces

multiple processes
minliple Ureads per proces

B

s = Istruction Irace

Figure 4.1 Thremds and Processes [ANDE9S7]

Process Creation

Principal events that cause process creation
1. System initialization
« Foreground processes (interactive programs)
« Background processes
Email server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process
* New login shell for an incoming telnet connection

3. User request to create a new process

4. Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

THE UISIVERSITY O 10
MEW SOUTH WALES

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

» Possible process/thread states
— running
— blocked
— ready

« Transitions between states shown

THE UISIVERSITY O 12
MEW SOUTH WALES

Some Transition Causing

Events

Running >Ready

—Voluntary Yield ()

— End of timeslice
Running >Blocked

— Waiting for input

« File, network,
— Waiting for a timer (alarm signal)
— Waiting for a resource to become available

THE UISIVERSITY O 13
MEW SOUTH WALES

The Ready Queue

Queue

Enter Dispatch ExIt

Pause

(b) Queulng diagram

THE UISIVERSITY O 15
MEW SOUTH WALES

Dispatcher

» Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
» Has to choose a Ready process to run
— How?

— ltis inefficient to search through all
processes

THE UISIVERSITY O 14
MEW SOUTH WALES

What about blocked processes?

» When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

Using Two Queues

THE UISIVERSITY O 16
MEW SOUTH WALES

Ready Queue Release
Admit Dispatch
—_— Processor
Timeout
Blocked Queue :
Event Event Walt

‘Occurs
(a) Single blocked queue

THE UISIVERSITY O 17
MEW SOUTH WALES

Ready Queue Release
Admit Dispatch
eEEERNEE S
‘ Timeout
Event 1 Queue
Event 1 . Event 1 Wait
Occurs
Event 2 Queune
Event 2 iz Event 2 Walt
Occurs i
¥
¥
¥
Event n Queue
Evenin Event n Walt
Occurs

{b) Multiple blocked queues

Implementation of Processes

» A processes’ information is
stored in a process control block

(PCB) EZ

* The PCBs form a process table P5

— Sometimes the kernel stack for P4

each process is in the PCB P3

— Sometimes some process info is P2

on the kernel stack P1

« E.g. registers in the trapframe in PO
0S/161

THE UISIVERSITY O 19
NEW SOUTH WALES

Implementation of Processes

Process management Memory File

Registers Paintar to text segment Root directory
Program counter Pointer to data segment | Working directory
Program status word Painter to stack segment | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children's CPU time

Time of next alarm

Threads
The Thread Model

E . \WI“E)I(gmpIe fields of a process table entry

NEW SOUTH WALES

Process 1 Procass 1 Process 1 Process.
\ 1 | i
Usar
space
Thread Thread
Kernel
space { Kernel Karnel
(a) (&)

(a) Three processes each with one thread
(b) One process with three threads

THE UISIVERSITY O 21
NEW SOUTH WALES

The Thread Model

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

* |tems shared by all threads in a process
* Items private to each thread

The Thread Model

Thread 2

Thread 1 T"':" 3

2 2 ? //Pro:ess
mors |\ B f

stack

{— Thread 3's stack

Kamel

Each thread has its own stack

THE URNIVERSITY (3 23
NEW SOUTH WALES

THE UISIVERSITY O 22
NEW SOUTH WALES

Thread Model

» Local variables are per thread
— Allocated on the stack

» Global variables are shared between all threads
— Allocated in data section
— Concurrency control is an issue

» Dynamically allocated memory (malloc) can be
global or local
— Program defined

THE UISIVERSITY O 24
NEW SOUTH WALES

Thread Usage

=
Kernel

Kayboard Disk

A word processor with three threads

THE UISIVERSITY O 25
NEW SOUTH WALES

Thread Usage

while (TRUE) { while (TRUE) {
get_next_request{Sbuf); wail_for_work(&buf)
handoff_work{&buf); look _for_page_in_cache{&buf, &page);
} if (page_nol_in_cache(&page)
read_page_from_disk(8buf, &page);
return_page({&page);
}

(a) o)

* Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

THE UISIVERSITY O 27
NEW SOUTH WALES

E

Thread Usage

Web server process

Dispatcher thread

Worker thread User
space

Web page cache
Kernel
Karnel space

MNetwork
connection

A multithreaded Web server

THE UMIVERSITY O
NEW SOUTH WALES

Summarising “Why Threads?”

» Simpler to program than a state machine

+ Less resources are associated with them than a
complete process
— Cheaper to create and destroy
— Shares resources (especially memory) between them

» Performance: Threads waiting for I/O can be overlapped
with computing threads
— Note if all threads are compute bound, then there is no

performance improvement (on a uniprocessor)

» Threads can take advantage of the parallelism available

on machines with more than one CPU (multiprocessor)

THE URNIVERSITY (3 29
NEW SOUTH WALES

E

Thread Usage

 Model | Characteristics
Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
 Finite-state machine | Parallelism, nonblocking system calls, interrupts |

Three ways to construct a server

THE UISIVERSITY O 28
NEW SOUTH WALES

E

Implementing Threads in User
Space

Process Thread

\
-~ / Kerne \ \

I
Hun-lf:'ns Thread Process
system table table
A user-level threads package
THE USNIVERSITY OF 30

NEW SOUTH WALES

User-level Threads

User-Level Threads
* Implementation at user-level Pros

— User-level Thread Control BIQCk (TCB), ready — Thread management and switching at user level is
queue, blocked queue, and dispatcher much faster than doing it in kernel level
K Ih k led f the th ds (it « No need to trap into kernel and back to switch

—Kernel has nq nowledge of the threads (i — Dispatcher algorithm can be tuned to the application
only sees a single process) « E.g. use priorities

— If a thread blocks waiting for a resource held - &?ga%e;wgr'ee;“emed on any OS (thread or non-
by another thread, its state is save and the

dispatcher switches to another ready thread

— Can easily support massive numbers of threads on a
— Thread management (create, exit, yield, wait)

per-application basis
« Use normal application virtual memory

* Kernel melrglorgj rf?ore contratined. Pi{]ficul(tj tof eff(ijo;?ntly
H i H H support wildly differing numbers of threads for different
are implemented in a runtime support library appiications.
E THE UNIVERSITY OfF 31 E THE UNIVERSITY OfF 32
. . NEW SOUTH WALES . . NEW SOUTH WALES

User-level Threads

User-Level Threads
+ Cons
. . » Cons
— Threads have to yield() manually (no timer)
. . — If a thread makes a blocking system call (or takes a page fault),
interrupt delivery to user-level) the process (and all the internal threads) blocks
» Co-operative multithreading + Can't overlap I/O with computation
— A single poorly design/implemented thread can + Canuse wrappers as a work around
monopolise the available CPU time - Example: wrap the read () call
R . — Use select () to test if read system call would block
» There are work-arounds (e.g. a timer signal per

» select() then read()

second to enable pre-emptive multithreading), they » Only call read () if it won't block
are course grain and k|udgey » Otherwise schedule another thread
. . — Wrapper requires 2 system calls instead of one
— Does not take adVantage of mUltIple CPUs (In » Wrapperslfrg needed for environments doing lots of blocking
H 1 H system calls?
rea“ty’ we still have .a Smgle threaded process « Can change to kernel to support non-blocking system call
as far as the kernel is concerned)

— Lose “on any system” advantage, page faults still a problem.
E THE USIVERSITY OF
NEW SOUITH WALES

33 E THE UISIVERSITY O 34
MEW SOUTH WALES

Implementing Threads in the Kernel Kernel Threads
rocess Thr/ead

» Threads are implemented in the kernel
— TCBs are stored in the kernel

« A subset of information in a traditional PCB
— The subset related to execution context
* TCBs have a PCB associated with them

— Resources associated with the group of threads (the
Kernel E % process)
Fi I .
I — Thread management calls are implemented
Process Thread
e as system calls
« E.g. create, wait, exit
A threads package managed by the kernel

THE UMIVERSITY O
MEW SOUTH WALES

35 E THE URNIVERSITY (3 36
MEW SOUTH WALES

Kernel Threads

+ Cons
— Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.
* More expensive than user-level equivalent
* Pros
— Preemptive multithreading
— Parallelism
« Can overlap blocking 1/0 with computation
» Can take advantage of a multiprocessor

THE UISIVERSITY O 37
MEW SOUTH WALES

Multiprogramming Implementation

1. Hardware stacks program counter, efc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4, Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. A bly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an
interrupt occurs — a thread/context switch

THE UISIVERSITY O 39
MEW SOUTH WALES

Context Switch

» Thread switch must be transparent for threads

— When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

=08 must save all state that affects the thread
» This state is called the thread context

» Switching between threads consequently results
in a context switch.

THE UISIVERSITY O 41
MEW SOUTH WALES

Hybrid Schemes

Multiple user threads
on a kernel thread

_]

User
space

Kernel
Kernel <— Kernel thread space

THE UISIVERSITY O 38
MEW SOUTH WALES

Thread Switch

« A switch between threads can happen any time
the OS is invoked
— On a system call
« Mandatory if system call blocks or on exit();
— On an exception
« Mandatory if offender is killed
— On an interrupt

« Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

THE UISIVERSITY O 40
MEW SOUTH WALES

Simplified
Explicit
" | Thread Switch

<+ thread _switch(b,a)

{

Thread a Thread b

thread switch(a,b) ———»

{

}

thread_switch(a,b) ———» }

'
{ '

THE UISIVERSITY O 42
MEW SOUTH WALES

Example Context Switch

* Running in user mode, SP points to user-
level activation stack

Representation of

Kernel SP

Kernel Stack
(Memory) \

THE UISIVERSITY O 43
NEW SOUTH WALES

Example Context Switch

» We push a trapframe on the stack
— Also called exception frame, user-level context....
— Includes the user-level PC and SP

Kernel SP

/

THE UISIVERSITY O 45
NEW SOUTH WALES

E

Example Context Switch
» The kernel decides to perform a context switch

— It chooses a target thread (or process)
— It pushes remaining kernel context onto the stack

/ Kernel SP

THE UISIVERSITY O 47
NEW SOUTH WALES

Example Context Switch

» Take an exception, syscall, or interrupt,
and we switch to the kernel stack

Kernel SR

AN

THE UISIVERSITY O 44
NEW SOUTH WALES

Example Context Switch

» Call ‘C’ code to process syscall, exception,
or interrupt
—Results in a ‘C’ activation stack building up

Kernel SP

/

THE UISIVERSITY O 46
NEW SOUTH WALES

Example Context Switch

* Any other existing thread must
— be in kernel mode (on a uni processor),

— and have a similar stack layout to the stack we are
currently using

Kernel

stacks of Kernel SP
other

threads

[IKemel State['C’ activation stack] _trapframe |
[IKemel State['C’ activation stack] _trapframe |
48

THE UMIVERSITY O
NEW SOUTH WALES

Example Context Switch

» We save the current SP in the PCB (or TCB),
and load the SP of the target thread.
— Thus we have switched contexts

Kernel SP

THE UMIVERSITY O
MEW SOUTH WALES

Example Context Switch

» Load the target thread’s previous context,
and return to C

Kernel SP

THE UMIVERSITY O
MEW SOUTH WALES

Example Context Switch

» The C continues and (in this example)
returns to user mode.

Kernel SP

THE UMIVERSITY O
MEW SOUTH WALES

Example Context Switch

* The user-level context is restored

Kernel SP

THE UMIVERSITY O
MEW SOUTH WALES

Example Context Switch

* The user-level SP is restored

Kernel SP

THE URNIVERSITY (3 53
WEW SOUTH WALES

The Interesting Part of a Thread
Switch

* What does the “push kernel state” part
do???

Kernel SP

THE UMIVERSITY O 54
MEW SOUTH WALES

0S/161 md_switch

md_switch (struct pcb *old, struct pcb *nu)

{
if (old==nu) {
return;
}
/*

* Note: we don't need to switch curspl, because splhigh()
* should always be in effect when we get here and when we
* leave here.

*/

old->pcb_kstack = curkstack;
old->pcb_ini upt = in_i pt;

curkstack = nu->pcb_kstack;
in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

i)

0OS/161 mips_switch

mips_switch:

The order must match arch/mips/include/switchframe.h.

/*
* a0 contains a pointer to the old thread's struct pcb.

* al contains a pointer to the new thread's struct pcb.

.

* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:

-

* s0-s8

* gp, ra

*

.

*/

/* Allocate stack space for saving 11 registers. 11%4 = 44 */
addi sp, sp, -44

0OS/161 mips_switch

/* save the registers */
sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw 4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw sl, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */
sw sp, 0(a0)

THE UMIVERSITY O
NEW SOUTH WALES

57

THE UISIVERSITY O 56
NEW SOUTH WALES

0S/161 mips_switch

/* Get the new stack pointer from the new pcb */
1w sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

1w s0, 0(sp)
1w s1, 4(sp)
v s2, 8(sp)
1w s3, 12(sp)
1w 54, 16(sp)
1w s5, 20(sp)
1w s6, 24(sp)
it s7, 28(sp)
1w s8, 32(sp)
b gp, 36(sp)
1w ra, 40(sp)
nop /* delay slot for load */

/* and return. */
3 ra

addi sp, sp, 44
.end mips_switch

/% in delay slot */

Thread a Theadb | Revisiting
semsmen ——— ¢ Thread Switch
L
y o —————nips_pwitch(b,a)
[
v 3
mips switch(a,b) ——» } i

{

THE UMIVERSITY O
NEW SOUTH WALES

59

THE UISIVERSITY O 58
NEW SOUTH WALES

10

