Operating System Overview

Chapter1.5-1.9

1
THE LIS ERSITY 0F
AW SERITH WALLS

Structure of a Computer
User Mode System

Application Application Application

System Libraries System Libraries | | System Libraries

Mode

Kernel _

3
THE LIS ERSITY 0F
AW SERITH WALLS

Structure of a Computer System

Interaction via
function calls to

User Mode Application

I/ library procedures
System Libraries

5
THE LS ERSITY OF
AW SR ITH WALLS

Operating System

» A program that controls execution of
applications
— The resource manager

» An interface between applications and
hardware
— The extended machine

2
THE LIS ERSITY 0F
AW SERITH WALLS

Structure of a Computer

User Mode System
Application

System Libraries

Interacts via load
Kernel and store
Mode instructions to
CPU and device
registers, and
interrupts

THE LIS ERSITY 0F
AW SERITH WALLS

Structure of a Computer System

User Mode Application Interaction via

System Libraries |

System Calls

6
THE LS ERSITY OF
AW SR ITH WALLS

Kernel
Mode

FCSe
A note on System Libraries

» System libraries are just that, libraries of
support functions (procedures,
subroutines)

— Only a subset of library functions are
actually systems calls
« stremp(), memcpy(), are pure library functions
« open(), close(), read(), write() are system calls
— System call functions are in the library for
convenience

THE UINIVERSITY 0
AW SERITH WALLS

[cemm
Services Provided by the
Operating System

* Program development
— Editors, compilers, debuggers
» Not so much these days

» Program execution
— Load a program and its data
» Access to I/O devices
» Controlled access to files
— Access protection
» System access
— User authentication

THE UINIVERSITY 0
AW SERITH WALLS

Services Provided by the
Operating System
* Accounting
— collect statistics
— monitor performance
— used to anticipate future enhancements
— used for billing users

THIE LNRERSITY OF
AW SR ITH WALLS

[Cemmm——|
Operating System
« Convenience Objectives

— Make the computer more convenient to use
 Abstraction
— Hardware-independent programming model
« Efficiency
— Allows the computer system to be used in an efficient
manner
 Ability to evolve

— Permit effective development, testing, and
introduction of new system functions without
interfering with existing services

* Protection

THE UINIVERSITY 0
AW SERITH WALLS

(o
Services Provided by the
Operating System

 Error detection and response

— internal and external hardware errors
° memory error
+ device failure

— software errors
« arithmetic overflow
« access forbidden memory locations

— operating system cannot grant request of

application

THE UINIVERSITY 0
AW SERITH WALLS

[CSemm——|
Operating System Software

» Fundamentally, OS functions the same way
as ordinary computer software
— Itis a program that is executed (just like apps)
— It has more privileges

» Operating system relinquishes control of the
processor to execute other programs

— Reestablishes control after
- System calls
« Interrupts (especially timer interrupts)

THIE LNRERSITY OF
AW SR ITH WALLS

Kernel

* Portion of the operating system that is
running in privileged mode

 Usually resident in main memory

» Contains fundamental functionality

— Whatever is required to implement other
services

— Whatever is required to provide security
« Contains most-frequently used functions
« Also called the nucleus or supervisor

.E N
THE UINIVERSITY 0
AW SERITH WALLS

Processes

« A program in execution

+ An instance of a program running on a computer

« The entity that can be assigned to and executed on a
processor

* A unit of resource ownership

+ A unit of activity characterized by a single sequential
thread of execution, a current state, and an
associated set of system resources

— Nowadays the execution abstraction is separated out:
Thread

— Single process can contain many threads

.E :
THE UINIVERSITY 0
AW SERITH WALLS

Process

» Consists of three components
— An executable program
* text
— Associated data needed by the program
« Data and stack
— Execution context of the program
« All information the operating system needs to
manage the process
— Registers, program counter, stack pointer, etc...
« A multithread program has a stack and
E B execution context for each thread 17

Major OS Concepts

* Processes

» Concurrency and deadlocks

* Memory management

 Files

* Information Security and Protection
Scheduling and resource management

.E -
THE UINIVERSITY 0
AW SERITH WALLS

P Memory
« Consist of three rocess
segments Stack
— Text
« contains the code
(instructions)
— Data
+ Global variables Gap
— Stack I
* Activation records of
procedure
+ Local variables Data
* Note:
— data can dynamically grow -
up
— The stack can dynamically
grow down
E THE LsvERSITY OF 16

Multiple processes creates
concurrency issue

(a) (B}

(a) A potential deadlock. (b) an actual deadlock.

E ’
THIE LNRERSITY OF
AW SR ITH WALLS

Memory Management

* The view from thirty thousand feet
— Process isolation
« Prevent processes from accessing each others data
— Automatic allocation and management
« Don’t want users to deal with physical memory directly
— Support for modular programming
— Protection and access control
« Still want controlled sharing
— Long-term storage
— OS services
« Virtual memory
« File system

.E ;
THE UINIVERSITY 0
AW SERITH WALLS

Virtual Memory Addressing

Figure 210 Virtual Memory Addressing

£F

.E i}
THE UINIVERSITY 0
AW SERITH WALLS

an |4z
As [e] [o]
I
w5525 2| N
N N
EN N
=] =]
5 el L=}
= o
[a] program
v
= E
Ve
prrgram
Y
Em
—_
Main Memeary Disk
Maln me ey oo o & Secoriary memory (8] can
i o s e e, [T —
el o e s of . et T ot of sofme
Yo program b exrele, e sl of pages. Foges i 38
ol 1 g st b I prusrasm piun the oprrating e
i mmcey. are o ik, an are B,
Figure 28 Virtual Memory Concepts

Virtual Memory

» Allows programmers to address
memory from a logical point of view
— Gives apps the illusion of having RAM to
themselves
— Logical addresses are independent of
other processes
— Provides isolation of processes from each
other
» Can overlap execution of one process
while swapping in/out others.

THE LISNIVERSITY O 20
TGS

(o
Paging

 Allows process to be comprised of a
number of fixed-size blocks, called
pages

* Virtual address is a page number and
an offset within the page

» Each page may be located any where in
main memory

* A page may actually exist only on disk

.E -
THE UINIVERSITY 0
AW SERITH WALLS

File System

* Implements long-term store

* Information stored in named objects
called files

24

VE LNAERSITY OF
WOHITH WALLS

oy
57

Example File System

Scheduling and Resource
. Eaimess Management

— give equal and fair access to all processes
« Differential responsiveness
— discriminate between different classes of jobs
- Efficiency
— maximize throughput, minimize response time,
and accommodate as many uses as possible

27

Operating System
Structure

« In practice, layering is only a guide
— Operating Systems have many
interdependencies
» Scheduling on virtual memory
« Virtual memory on I/O to disk
+ VM on files (page to file)
« Files on VM (memory mapped files)
* And many more...

29
THIE LNRERSITY OF
AW SR ITH WALLS

Information Protection and
Security

* Access control
— regulate user access to the system
— Involves authentication

* Information flow control

— regulate flow of data within the system and
its delivery to users

Operating System
Structurg

The layered

approach

a) Processor allocation
and
multiprogramming

b) Memory
Management

c) Devices

d) File system

e) Users

— Each layer depends
on the the inner

30
THIE LNRERSITY OF
AW SR ITH WALLS

[weslayers 2

The Monolithic Operating
System Structure

* Also called the
“spaghetti nest”
approach
— Everything is

tangled up with
everything else.

* Linux, Windows,

FCSe
The Monolithic Operating
System Structure

* However, some reasonable structure
usually prevails

Main
procadure

Sarvice
procadures

procedures

31
THE LIS ERSITY 0F
AW SERITH WALLS

Microkernel-based sttems

+ Assigns only a few essential functions to the kernel
— Address space
— Interprocess Communication (IPC)
— Basic scheduling
— Minimal hardware abstraction

« Other services implemented by user-level servers

+ Traditional “system calls” become IPC requests to
servers

+ Extreme view of a microkernel
— A feature is only allowed in the kernel if required for security

33
THE LIS ERSITY 0F
AW SERITH WALLS

-

Application

<

Address Space Thread

—r—

p-kernel

35
THE LS ERSITY 0F
AW SR ITH WALLS

[Cemmm——|
OS Complexity is a major
issue

» Approaches to tackling the problem
— Safe kernel extensions
» SPIN - safe programming language
+ VINO - sandboxing (hardware protection)
— Microkernels
— Exokernels

32
THE LIS ERSITY 0F
AW SERITH WALLS

Application

THE LIS ERSITY 0F
AW SERITH WALLS

classic + thin specialized

i

THE LS ERSITY OF
AW SR ITH WALLS

o
£F

Client/Server Model

Simplifies the Executive
— Possible to construct a variety of APls
* Improves reliability

— Each service runs as a separate process with its
own memory partition

» Provides a uniform means for applications to
communicate via IPC

» Provides a base for distributed computing

37

HE LINWERSITY OF
AW ORI WALLY

The client/server model

Machine 1 Machine 2 Machine 3 Machine 4
| cient g| [} Flesever | [Processserver | | Terminal server |
vo| weme [[] weme | [kewal | | keme |ee-
~] [
Natwork

Message from
client to sarver

The client-server model of microkernel make
it easier to extend to a distributed system

UNIX

* Provides a good hardware abstraction
— Everything is a file (mostly)
* Runs on most hardware

» Comes with a number of user services
and interfaces

.E N
THE UINIVERSITY 0
AW SERITH WALLS

Traditional UNIX Structure

UNIX Commands
and Libraries

User-written
Applications

40

HE Ly avERr o8 Figure 2.15 General UNIX Architecture

o
£F

— shell
— C compiler
[TP

Traditional vt

VE LNAERSITY OF
WOHITH WALLS

T'rap
~! Libraries

Kernel Level
U N |X [System Call Inferface |

Kernel

Inter-process
. communication
File Subsystem Process

Control | g pequier

[Butfer Cache Memary
management

character | block

Device Drivers

[Hardware Control
Kernel Level

Hardware Level

57

[Hardware

