
User-level Mutual Exclusion



Lock-free?

• Avoid needing locking by using lock-free 
date structure
– Still need short atomic sequences

• compare-and-swap

• Lock-based data structure also need 
mutual exclusion to implement the lock 
primitive themselves.



How do we provide efficient 
mutual exclusion to kernel-

implemented threads at user-
level

• Interrupt disabling?
• Syscalls?
• Processor Instructions?



Optimistic Approach

• Assume the critical code runs atomically
– Atomic Sequence

• If an interrupt occurs, OS recovers such that 
atomicity is preserved

• Two basic mechanisms
– Rollback

• Only single memory location update
• Guarantee progress???

– Rollforward



How does the OS know what is 
an atomic sequence?

• Designated sequences
– Match well know sequences surrounding PC

• Matching takes time
• sequence may occur outside an atomic sequences

– Rollback might break code
– Rollforward okay

• Sequences can be inlined
• No overhead added to each sequence, overhead only on 

interruption



• Static Registration
– All sequences are registered at program 

startup
• No direct overhead to sequences themselves
• Limited number of sequences

– Reasonable to identify on interrupt
– No inlining



• Dynamic Registration
– Share a variable between kernel and user-

level, set it while in an atomic sequence
– Can inline, even synthesize sequences at 

runtime
– Adds direct overhead to each sequence



How to roll forward?

• Code re-writing
– Re-write instruction after sequence to call 

back to interrupt handler 
• Cache issues



• Cloning
– Two copies of each sequence

• normal copy
• modified copy that call back into interrupt 

handler
• On interrupt, map PC in normal sequence into 

PC in modified
• Mapping can be time consuming

– Inlining???



• Computed Jump
– Every sequence uses a computed jump at 

the end
• Normal sequence simply jmp to next instruction
• Interrupted sequence jumps to interrupt handler
• Adds a jump to every sequence



• Controlled fault
– Dummy instruction at end of each 

sequences
• NOP for normal case
• Fault for interrupt case

– Example is read from (in)accessible page

– Good for user-kernel privilege changes
– Still adds an extra instruction



Limiting Duration of 
ROllforward

• Watchdog
• Restriction on code so termination can 

be inspected for




