
Slide 1

I/O MANAGEMENT

➜ Categories of I/O devices and their integration with processor

and bus

➜ Design of I/O subsystems

➜ I/O buffering and disk scheduling

➜ RAID

Slide 2

CATEGORIES OF I/O DEVICES

There exists a large variety of I/O devices:

➜ Many of them have different properties

➜ They seem to require a range of different interfaces

• We don’t want a new device interface for every new device

• Diverse, but similar interfaces lead to duplication of code

➜ Challenge: Uniform and efficient approach to I/O

CATEGORIES OF I/O DEVICES 1

Slide 3

Monitor

Keyboard
Floppy

disk drive

Hard

disk drive

Hard

disk

controller

Floppy

disk

controller

Keyboard

controller

Video

controller

MemoryCPU

Bus

Controller:

➜ can often handle more than one identical devices

➜ low level interface to actual device

➜ for disks: perform error check, assemble data in buffer

Slide 4

Three classes of devices (by usage):

➜ Human readable:

• For communication with user

• Keyboard, mouse, video display, printer

➜ Machine readable:

• For communication with electronic equipment

• Disks, tapes, sensors, controllers, actuators

➜ Remote communication:

• For communication with remote devices

• Modems, Ethernet, wireless

WHICH DIFFERENCES IMPACT DEVICE HANDLING? 2

Slide 5

WHICH DIFFERENCES IMPACT DEVICE HANDLING?

➜ Data rate

➜ Complexity of control

- e.g., line printer versus high-speed graphics

➜ Unit of transfer

- stream-oriented: e.g. terminal I/O

- block-oriented: e.g. disk I/O

➜ Data representation (encoding)

➜ Error conditions (types, severity, recovery, etc.)

Hopefully similarity within a class, but there are exceptions!

Slide 6

Typical data rates of I/O devices::

Keyboard

101 102 103 104 105

Data Rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit Ethernet

Floppy disk

Laser printer

Scanner

Optical disk

ACCESSING I/O DEVICES — HARDWARE 3

Slide 7

ACCESSING I/O DEVICES — HARDWARE

Interfacing alternatives:

➜ Port mapped I/O

➜ Memory mappaed I/O

➜ Direct memory access (DMA)

Slide 8

Port mapped versus memory mapped I/O:

➜ Memory-mapped I/O:

• I/O device registers and memory are mapped into the

normal memory address range

• Standard memory access is used

- any memory access function can be used to manipulate

I/O device

➜ Port-mapped I/O:

• I/O devices are accessed using special I/O port instructions

• Only part of the address lines are needed

- standard PC architecture: 16 bit port address space

ACCESSING I/O DEVICES — HARDWARE 4

Slide 9

Two address One address space Two address spaces

Memory

I/O ports

0xFFFF…

0

(a) (b) (c)

(a) Port mapped

(b) Memory mapped

(c) Hybrid

Slide 10

Memory mapped I/O

✔ directly accessable in high-level languages

✔ no need for special protection mechanism

✔ not necessary to load contents into main memory/registers

✘ interference with caching

✘ memory modules and I/O devices must inspect all memory

references

✘ complex problem if multiple buses are present

DIRECT MEMORY ACCESS (DMA) 5

Slide 11

DIRECT MEMORY ACCESS (DMA)

Basics:

➜ Takes control of the system form the CPU to transfer data to and

from memory over the system bus

➜ Cycle stealing is used to transfer data on the system bus

➜ The instruction cycle is suspended so data can be transferred

➜ The CPU pauses one bus cycle

➜ No interrupts occur (i.e., no expensive context switches)

Slide 12

CPU

DMA

controller

Disk

controller

Main

memory

Buffer

1. CPU

programs

the DMA

controller

Interrupt when

done

2. DMA requests

transfer to memory 3. Data transferred

Bus

4. Ack

Address

Count

Control

Drive

DIRECT MEMORY ACCESS (DMA) 6

Slide 13

Processor

Cycle

Fetch

Instruction

Processor

Cycle

Decode

Instruction

Processor

Cycle

Instruction Cycle

Time

DMA

Breakpoints

Interrupt

Breakpoint

Fetch

Operand

Processor

Cycle

Execute

Instruction

Processor

Cycle

Store

Result

Processor

Cycle

Process

Interrupt

➜ most buses as well as DMA controllers can operate in

word-by-word or block mode

- word-by-word mode: use cycle stealing to transfer data

- block mode: DMA controller aquires bus to transfer data

➜ typically, devices like disks, sound or graphic cards use DMA

Slide 14

Processor transfers data vs DMA:

➜ Processor transfers data:

- Processor copies data from main memory into processor

registers or memory

- Large data volume ⇒ CPU load can be very high

➜ Direct memory access (DMA):

- Processor forwards address range of data to a DMA

controller

- The DMA controller performs the data transfer without

processor intervention (but locks the memory bus)

- Slows down processor, but overhead much less

DIRECT MEMORY ACCESS (DMA) 7

Slide 15

Configurations: Single bus, detached DMA::

Processor DMA I/O ¥ ¥ ¥ I/O Memory

➜ Cycle stealing causes the CPU to execute more slowly

Slide 16

Single bus, integrated DMA I/O:

Processor DMA DMA

I/O

I/O I/O

Memory

➜ Reduce busy cycles by integrating the DMA and I/O devices

DIRECT MEMORY ACCESS (DMA) 8

Slide 17

Separate I/O bus:

I/O bus

System bus

Processor DMA Memory

I/O I/O I/O

➜ Path between DMA module and I/O module that does not

include the system bus

Slide 18

ACCESSING I/O DEVICES

Three general approaches on software level:

➀ Programmed I/O

- poll on device

➁ Interrupt-driven I/O

- suspend when device not ready

➂ I/O using direct memory access (DMA)

- use extra hardware component

Let’s have a look at each of the three methods.

PROGRAMMED AND INTERRUPT DRIVEN I/O 9

Slide 19

PROGRAMMED AND INTERRUPT DRIVEN I/O

Example: what happens when the CPU reads from disk?

➀ Disk controller

- reads block bit by bit into buffer

- compute checksum to detect read errors

- causes interrupt

➁ CPU copies block byte by byte into main memory

Slide 20

PROGRAMMED I/O

Read:

➀ poll on status of device

➁ issue read command to device

➂ wait for read to complete, poll on status of device

➃ copy data from device register into main memory

➄ jump to (1) until all data read

Write:

➀ poll on status of device

➁ copy data to device register

➂ issue write command to device

➃ jump to (1) until all data written

PROGRAMMED I/O 10

Slide 21

Properties:

➜ programmed I/O suitable in some situations (e.g., single

threaded, embedded system)

➜ usually inefficent, waste of CPU cycles

Slide 22

INTERRUPT-DRIVEN I/O

➜ avoid polling on device!

CPU

Interrupt

controller

3. CPU acks

 interrupt

2. Controller

 issues

 interrupt

1. Device is finished

Disk

Keyboard

Printer

Clock

Bus

12

6

9 3
48

57

111
210

INTERRUPT-DRIVEN I/O 11

Slide 23

INTERRUPT-DRIVEN I/O

Steps involved:

➀ issue read/write command to device

➁ wait for corresponding interrupt, suspend

➂ device ready: acknowledge I/O interrupt

➃ handle interrupt:

- read data from device register

- write data to device register

Properties:

➜ high overhead due to frequent context switching

➜ more efficient use of CPU than programmed I/O

➜ but, still waste of CPU cycles as CPU does all the work

Alternative: use extra hardware (direct memory access

controller) to offload some of the work from CPU

Slide 24

DIRECT MEMORY ACCESS (DMA)

How DMA works:

➀ CPU tells DMA controller what it should copy, and where it

should copy to

➁ DMA controller issues read request to disk controller

➂ disk controller

- transfers word into main memory

- signals DMA controller

➃ DMA controller decrements counter

- if all words are transferred, signal CPU

- otherwise, continue with step (2)

THE QUEST FOR GENERALITY/UNIFORMITY 12

Slide 25

THE QUEST FOR GENERALITY/UNIFORMITY

Ideal state:

➜ handle all I/O devices in the same way (both in the OS and in

user processes)

Problem:

➜ Diversity of I/O devices

➜ Especially, different access methods (random access versus

stream-based) as well as vastly different data rates

➜ Generality often compromises efficiency!

Slide 26

THE EVOLUTION OF THE IO-FUNCTION

Hardware changes trigger changes in handling of IO

devices:

➀ Processor directly controls a peripheral device

➁ Controller or IO module is added

• Programmed IO without interrupts

• Example: Universal Asynchroneous Receiver Transmitter

(UART)

• CPU reads or writes bytes to IO controller

• CPU does not need to handle details of external device

➂ Controller or IO module with interrupts

• CPU does not spend time waiting on completion of

operation

THE EVOLUTION OF THE IO-FUNCTION 13

Slide 27

➃ DMA

• CPU involved at beginning an end only

➄ IO module has separate processor

• Example: SCSI controller)

• Controller CPU executes SCSI code out of main memory

➅ IO module is a computer in its own right

• Myrinet multi-gigabit network controller

Slide 28

I/O SOFTWARE LAYERS

I/O software is divided into a number of layers, to provide

adequate abstraction and modularisation:

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

I/O SOFTWARE LAYERS 14

Slide 29

I/O Organisation:

User

Processes

Communication

Architecture

Device

I/O

Scheduling

& Control

(b) Communications port

Hardware

User

Processes

Logical

I/O

Device

I/O

Scheduling

& Control

(a) Local peripheral device

Hardware

User

Processes

Directory

Management

File

System

Physical

Organization

Device

I/O

Scheduling

& Control

(c) File system

Hardware

Slide 30

I/O INTERRUPT HANDLER

➜ Interrupt handlers are best “hidden”

➜ Can execute almost any time, raises complex concurrency

issues

➜ Generally, drivers starting an IO operation block until interrupt

notifies them of completion (dev read())

➜ Interrupt handler does its task, then unblocks driver

I/O INTERRUPT HANDLER 15

Slide 31

I/O INTERRUPT HANDLER

Main steps involved:

➀ save state that has not already been saved by hardware

➁ set up context (address space) for specific interrupt handler

(stack, TLB, MMU, page table)

➂ set up stack for interrupt service procedure (usually runs in

kernel stack of current process)

➃ acknowledge interrupt controller, re-enable other interrupts

➄ run specific interrupt handler

• find out what caused interrupt (received network packet,

disk read finished, etc)

• get information from device controller

➅ re-enable interrupt

➆ invoke scheduler

Slide 32

DEVICE DRIVER

Code to control specific device:

➜ usually differs from device to device

➜ sometimes suitable for class of devices adhering to a standard

(e.g., SCSI)

➜ common interface to rest of OS, depending on type (block,

character, network) of device

DEVICE DRIVER 16

Slide 33

DEVICE DRIVER

User

space

Kernel

space

User process

User

program

Rest of the operating system

Printer

driver

Camcorder

driver

CD-ROM

driver

Printer controllerHardware

Devices

Camcorder controller CD-ROM controller

Slide 34

Main steps involved:

➀ check input parameters

➁ translate request (open, close, read, . . .) into appropriate

sequence of commands for part. hardware

➂ convert into device specific format e.g. disk

- linear block number into head, track, sector, cylinder number

➃ check if device is available, queue request if necessary

➄ program device controller (may block, depending on device)

Device drivers also initialise hardware at boot time, shut it

down cleanly.

DEVICE INDEPENDENT I/O SOFTWARE 17

Slide 35

DEVICE INDEPENDENT I/O SOFTWARE

➜ Commonality between drivers of different classes

➜ Split software into device dependent and independent part

Device independent software is responsible for:

➜ Uniform interfacing to device drivers

➜ Buffering

➜ Error reporting

➜ Allocating/releasing

➜ Providing device independent block sizes

We will look into each of these tasks separately

Slide 36

UNIFORM INTERFACING

Design goal:

➜ interface to all device driver should be the same

➜ may not be possible, but few classes of different devices, high

similarity between classes

➜ provides an abstraction layer over concrete device

➜ uniform kernel interface for device code

- kmalloc, installing IRQ handler

- allows kernel to evolve without breaking exisiting drivers

Naming of devices:

➜ map symbolic device names to driver

➜ Unix, Windows 2000:

- devices appear in the file system

- usual file protection rule applies to device drivers

UNIFORM INTERFACING 18

Slide 37

Unix device files:

➜ Uniform device interface: devices as files

- read()

- write()

- seek()

- ioctl() etc,

➜ Main attributes of a device file:

- Device type: block versus character (stream) devices

- Major number (1–255) identifies driver (device group)

- Minor number (8 bit) identifies a specific device in a group

Slide 38

Examples:

Name Type Major Minor Description

/dev/fd0 block 2 0 floppy disk

/dev/hda block 3 0 first IDE disk

/dev/hda2 block 3 0 2nd primary partition of IDE disk

/dev/ttyp0 char 3 0 terminal

/dev/ttyp0 char 5 1 console

/dev/null char 1 3 Null device

UNIFORM INTERFACING 19

Slide 39

Some I/O devices have no device file:

➜ network interfaces are handled differently

➜ However, symbolic name for network interfaces (eth0)

➜ Device name associated with network address

➜ User-level interface: sockets (a BSD invention)

➜ Sockets are also a file in the Unix file system, but offer a different

interface

• socket(), bind(), receive(), send() instead of open(),

read() and write()

Slide 40

Implementation of device files:

➜ Virtual File System (VFS)

• Re-directs file operations to device driver

• driver determined by the major number

Device drivers:

➜ Device-dependent low-level code

• convert between device operations and standard file ops

(read(), write(), ioctl(), etc.)

➜ Device drivers in Linux are:

• statically linked into the kernel, or

• dynamically loaded as kernel modules

➜ The kernel provides standardised access to DMA etc.

UNIFORM INTERFACING 20

Slide 41

Association of device drivers with device files:

➜ VFS maintains tables of device file class descriptors

• chrdevs for character devices

• blkdevs for block devices

• indexed by major device number

• each contains file operation table

• device driver registers itself with VFS by providing an entry

struct file_operations {

ssize_t (*read) (struct file *, char *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

int (*ioctl) (struct inode *, struct file *,

unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*lock) (struct file *, int, struct file_lock *);

...

};

Slide 42

Device access via device files:

➜ On file open(), VFS does the following:

• retrieves file type as well as major and minor number

• indexes either chrdevs or blkdevs with major number

• places file operations table into file descriptor

• invokes the open() member of the file operations table

➜ On other file operations:

• VFS performs indirect jump to handler function via file

operations table

➜ The file operation table provides a small and well-defined

interface to most devices

➜ However, the ioctl() entry is a kind of “back door”:

• implements functionality not covered by the other routines

• ugly!

ALLOCATING AND RELEASING DEVICES 21

Slide 43

ALLOCATING AND RELEASING DEVICES

➜ some devices can only be used by single process

- e.g., CD burner

➜ OS must manage allocation of devices

➜ if device is mapped to special file

- open and close to aquire and release device

- may be blocking or non-blocking (fail)

Slide 44

I/O BUFFERING

Why do we need buffering?

➜ Performance:

• Put output data in buffer and write asynchronously

• Batch several small writes into one large

• Some devices can only read/write largish blocks

• Read ahead

➜ Locking of memory pages; deadlock avoidance:

• Cannot swap pending I/O data (especially with DMA)

• Cannot deliver data to process that is swapped out

➼ lock pages when I/O operation is queued

I/O BUFFERING 22

Slide 45

User process

User

space

Kernel

space

2 2

1 1 3

Modem Modem Modem Modem

(a) (b) (c) (d)

(a) no buffering

(b) buffer in user space

- what happens if page is swapped to disk?

(c) buffer in kernel space

(d) double buffering

Slide 46

2

1 5

4

3

User process

Network

Network

controller

User

space

Kernel

space

➀ data copied to kernel space, user process does not block

➁ driver copies it into controller register

➂ copy to network, receiver’s buffer

➃ send acknowledgement

➄ copy to kernel space, then user space

ALLOCATING AND RELEASING DEVICES 23

Slide 47

ALLOCATING AND RELEASING DEVICES

➜ some devices can only be used by single process

- e.g., CD burner

➜ OS must manage allocation of devices

➜ if device is mapped to special file

- open and clode to aquire and release device

- may be blocking or non-blocking (fail)

Slide 48

ERROR REPORTING

Errors in context of I/O are common and can occur on

different levels:

➜ programming errors:

- write to read-only device

- invalid buffer address

report error code to caller

➜ I/O error

• device not present

• storage medium defect

➜ critical errors

- critical data structure destroyed

USER SPACE I/O SOFTWARE 24

Slide 49

USER SPACE I/O SOFTWARE

Library functions of different complexity

➜ write

➜ fprintf

➜ graphics libraries

Spooling:

Special OS processes (daemons) control device

➜ Linux: check ls /var/spool to see what type of I/O operations

use spooling

Slide 50

SUMMARY OF I/O SYSTEM LAYERS

I/O

request

Layer
I/O

reply I/O functions

Make I/O call; format I/O; spooling

Naming, protection, blocking, buffering, allocation

Set up device registers; check status

Wake up driver when I/O completed

Perform I/O operation

User processes

Device-independent

software

Device drivers

Interrupt handlers

Hardware

HARD DISKS 25

Slide 51

HARD DISKS

After general discussion of I/O, let’s look at hard disks in detail

➜ Disk hardware

- architecture influences lower level I/O software

➜ Disk formatting

➜ Disk Scheduling

- dealing with disk requests

➜ RAID

Slide 52

COMPONENTS OF A DISK DRIVE

Surface 2

Surface 1

Surface 0

Surface 4

Surface 3

Surface 6

Surface 5

Surface 8

Surface 7

Platter

Spindle Boom

Read/write head (1 per surface) Direction of

arm motion

Surface 9

TRACKS PER CYLINDER 26

Slide 53

TRACKS PER CYLINDER

Slide 54

Disk geometry:

S6

S
4

S
5

S3
S2

S
1

S
N

¥ ¥ ¥

S6
¥ ¥ ¥

S
5

S
4

S3
S2

S
1

S
N

Inter-sector gap

Inter-track gap

Sectors Tracks

TRACKS PER CYLINDER 27

Slide 55

Disk geometry:

0 1

2
3

4
5

6
789

10
11

12
13

14
15

0 1
2

3

4

5
6

7
8

9
1
0

11

12
13

14151617
18

19

20
2
1

2
2

2
3

2
4

2
5

2
6

27

28
29

30 31 0
1

2

3

4
5

6
7

89

10

11
1213

14
15

16

1
7

1
8

1
9

2
0

21

22

23
24

➜ modern disks are devided into zones

➜ different number of sectors per track for each zone

➜ present virtual geometry to OS

- pretends to have equal amount of sectors per track

- maps virtual (cylinder, head,sector) coordinate to real

location

Slide 56

DISK FORMATTING

Low-level formatting:

Preamble Data ECC

Layout of sector:

- Preamble: marks start of a sector, cylinder and sector number

- Data: usually 512 byte section

- Error correction code (ECC): used to detect, correct errors

DISK FORMATTING — CYLINDER SKEW 28

Slide 57

DISK FORMATTING — CYLINDER SKEW

0 1 2
3

4
5

6
7

8
9

10
1112131415161718

19

20
21

22
23

24
25

26
27

28
29

30 31

29 30 31
0

1
2

3
4

5
6

7
8

9
10111213141516

17
18

1
9

2
0

2
1

2
2

2
3

24

25
26 27 28

26 27 28
29

30
3
1

0
1

2
3

4
5

6
7

89101112
13

14
15

1
6

1
7

1
8

1
9

2
0

21

22
23 24 25

23 24
25

26

27
2
8

2
9

3
0

3
1

0
1

2

3
4

5678
9

10

11
12

1
3

1
4

1
5

1
6

1
7

18

19
20

21 22

20 21
22

23

24
2
5

2
6

2
7

2
8

2
9

3
0

31

0

1
2

345
6

7

8

9
1
0

1
1

1
2

1
3

1
4

15

16
17

18 19

17 18
19

20

21

2
2

2
3

2
4

2
5

2
6

2
7

28

29

30
31012

3

4

5

6
7

8
9

1
0

1
1

12

13
14

15
16 Direction of disk

 rotation

Slide 58

DISK FORMATTING — INTERLEAVING SECTORS

(a)

07

34

1

2

6

5

(b)

07

52

4

1

3

6

(c)

05

14

3

6

2

7

➜ system may not be able to keep up with rotation speed

➜ to avoid interleaving sectors, modern controllers able to buffer

entire track

DISK FORMATTING — INTERLEAVING SECTORS 29

Slide 59

Partitioning:

➜ disk is divided into different partitions, each treated as a

separate logical disk.

➜ Partition table gives starting sector and size of each partition.

➜ master boot record: boot code and partition table

High-level formatting: each partition contains

➜ boot block

➜ free storage admin info

➜ root directory

➜ type of file system

Slide 60

DISK ERROR HANDLING

➜ due to high density, most disks have bad sectors

➜ small defects can be masked using ECC

➜ major defects handled by remapping to spare sectors

Substituting bad sectors:

Spare

sectors Bad

sector

0 1 2
3

4
5
6

8

9
10

11
12

13
1415161718

19
20

21

22

23

24

25
26

27
28

29

(a)

Replacement

sector

0 1 2
3

4
5
6

8

9
10

11
12

13
1415161718

19
20

21

22

23

24

25
26

27
28

29 7

(b)

0 1 2
3

4
5
6

7

8
9

10
11

12
1314151617

18
19

20

21

22

23

24
25

26
27

2829

(c)

DISK ERROR HANDLING 30

Slide 61

Can be done by

➜ disk controller

- before disk is shipped

- dynamically when repeated errors occur

- remapping by maintaining internal table or rewriting

preamble

➜ operating system: tricky (eg. backups)

Slide 62

DISK SCHEDULING

➜ Disk performance is critical for system performance

➜ Management and ordering of disk access requests have strong

influence on

- access time

- bandwidth

➜ Important to optimise because:

• huge speed gap between memory and disk

• disk throughput extremely sensitive to

- request order ⇒ disk scheduling

- placement of data on disk ⇒ file system design

➜ Request scheduler must be aware of disk geometry

DISK SCHEDULING 31

Slide 63

Disk performance parameters:

➜ Disk is moving device ⇒ must position correctly for I/O

➜ Execution of a disk operation involves:

• Wait time: the process waits to be granted device access

– Wait for device: time the request spends in a wait queue

– Wait for channel: time until a shared I/O channel is

available

• Access time: time the hardware needs to position the head

– Seek time: position the head at the desired track

– Rotational delay (latency): spin disk to the desired sector

• Transfer time: sectors to be read/written rotate below the

head

Slide 64

Wait for

Device

Wait for

Channel

Seek Rotational

Delay

Data

Transfer

Device Busy

PERFORMANCE PARAMETERS 32

Slide 65

PERFORMANCE PARAMETERS

➜ Seek time Ts: Moving the head to the required track

• not linear in the number of tracks to traverse:

- startup and settling time

• Typical average seek time: a few milliseconds

➜ Rotational delay:

- rotational speed, r, of 5,000 to 10,000rpm

- At 10,000rpm, one revolution per 6ms ⇒ average delay 3ms

➜ Transfer time:

• to transfer b bytes, with N bytes per track:

T =
b

rN

• Total average access time:

Ta = Ts +
1

2r
+

b

rN

Slide 66

A Timing Comparison:

➜ Ts = 2 ms, r = 10, 000 rpm, 512B sect, 320 sect/track

➜ Read a file with 2560 sectors (= 1.3MB)

➜ File stored compactly (8 adjacent tracks):

Read first track

Average seek 2ms

Rot. delay 3ms

Read 320 sectors 6ms

11ms ⇒ All sectors: 11 + 7 ∗ 9 = 74ms

➜ Sectors distributed randomly over the disk:

Read any sector

Average seek 2ms

Rot. delay 3ms

Read 1 sector 0.01875ms

5.01875ms ⇒ All: 2560 ∗ 5.01875 = 20, 328ms

DISK SCHEDULING POLICY 33

Slide 67

DISK SCHEDULING POLICY

Observation from the calculation:

➜ Seek time is the reason for differences in performance

➜ For a single disk there will be a number of I/O requests

➜ Processing in random order leads to worst possible performance

➜ We need better strategies

Slide 68

First-in, first-out (FIFO):

➜ Process requests as they come in

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

(a) FIFO

➜ Fair (no starvation!)

➜ Good for few processes with clustered requests

➜ deteriorates to random if there are many processes

DISK SCHEDULING POLICY 34

Slide 69

Shortest Service Time First (SSTF):

➜ Select the request that minimises seek time

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

➜ service order: 90, 58, 55,39,18, 150,160,184

➜ Minimising locally may not lead to overall minimum!

➜ Can lead to starvation

Slide 70

SCAN (Elevator): Move head in one direction

➜ services requests in track order until it reaches last track, then

reverse direction

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

➜ service order: 150,160,184, (200), 90, 58, 55,39,18, (0)

➜ Similar to SSTF, but avoids starvation

➜ LOOK: variant of SCAN, moves head only to last request of one

direction: 150,160,184, 90, 58, 55,39,18

➜ SCAN/LOOK are biased against region most recently traversed

➜ Favour innermost and outermost tracks

➜ Makes poor use of sequential reads (on down-scan)

DISK SCHEDULING POLICY 35

Slide 71

Circular SCAN (C-SCAN):

➜ Like SCAN, but scanning to one direction only

• When reaching last track, go back to first non-stop

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

(d)
➜ Better use of locality (sequential reads)

➜ Better use of disk controller’s read-ahead cache

➜ Reduces the maximum delay compared to SCAN

Slide 72

N -step-SCAN:

➜ SSTF, SCAN & C-SCAN allow device monopolisation

• process issues many requests to same track

➜ N -step-SCAN segments request queue:

• subqueues of length N

• process one queue at a time, using SCAN

• added new requests to other queue

DISK SCHEDULING POLICY 36

Slide 73

FSCAN:

➜ Two queues

• one being presently processed

• other to hold new incoming requests

Slide 74

Disk scheduling algorithms:

Name Description Remarks

Selection according to requestor

RSS Random scheduling For analysis and simulation

FIFO First in, first out Fairest

PRI By process priority Control outside disk magmt

LIFO Last in, first out Maximise locality & utilisation

Selection according to requested item

SSTF Shortest seek time first High utilisation, small queues

SCAN Back and forth over disk Better service distribution

C-SCAN One-way with fast return Better worst-case time

N-SCAN SCAN of N recs at once Service guarantee

FSCAN N-SCAN (N=init. queue) Load sensitive

DISK SCHEDULING 37

Slide 75

DISK SCHEDULING

➜ Modern disks:

• seek and rotational delay dominate performance

• not efficient to read only few sectors

• cache contains substantial part of currently read track

➜ assume real disk geometry is same as virtual geometry

➜ if not, controller can use scheduling algorithm internally

So, does OS disk scheduling make any difference at all?

Slide 76

LINUX 2.4.

➜ Used a version of C-SCAN

➜ no real-time support

➜ Write and read handled in the same way — read requests have

to be prioritised

L INUX 2.6. 38

Slide 77

LINUX 2.6.

Deadline I/O scheduler:

➜ two additional queues: FIFO read queue with deadline of 5ms,

FIFO write with deadline of 500ms

➜ request submitted to both queues

➜ if request expires,scheduler dispatches from FIFO queue

➜ Performance:

✔ seeks minimised

✔ requests not starved

✔ read requests handled faster

✘ can result in seek storm, everything read from FIFO queues

Slide 78

Anticipatory Scheduling:

➜ Same, but anticipates dependent read requests

➜ After read request: waits for a few ms

➜ Performance

✔ can dramatically reduce the number of seek operations

✘ if no requests follow, time is wasted

PERFORMANCE 39

Slide 79

PERFORMANCE

➜ Writes

- similar for writes

- deadline scheduler slightly better than AS

➜ Reads

- deadline: about 10 times faster for reads

- as: 100 times faster for streaming reads

apparently, applications like Apache run about 50% faster

Slide 80

RAID

➜ CPU performace has improved exponentially

➜ disk performance only by a factor of 5 to 10

➜ huge gap between CPU and disk performance

Parallel processing used to improve CPU performance.

Question: can parallel I/O be used to speed up and improve

reliability of I/O?

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 40

Slide 81

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS

Multiple disks for improved performance or reliability:

➜ Set of physical disks

➜ Treated as a single logical drive by OS

➜ Data is distributed over a number of physical disks

➜ Redundancy used to recover from disk failure (exception: RAID

0)

➜ There is a range of standard configurations

- numbered 0 to 6

- various redundancy and distribution arrangements

Slide 82

RAID 0 (striped, non-redundant):

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

➜ controller translates single request into separate requests to

single disks

➜ requests can be processed in parallel

➜ simple, works well for large requests

➜ does not improve on reliability, no redundancy

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 41

Slide 83

Data mapping for RAID 0:

strip 12

strip 8

strip 4

strip 0

Physical

Disk 0

strip 3

strip 4

strip 5

strip 6

strip 7

strip 8

strip 9

strip 10

strip 11

strip 12

strip 13

strip 14

strip 15

strip 2

strip 1

strip 0

Logical Disk

Physical

Disk 1

Physical

Disk 2

Physical

Disk 3

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

Array

Management

Software

Slide 84

RAID 1 (mirrored, 2× redundancy):

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

➜ duplicates all disks

➜ write: each request is written twice

➜ read: can be read from either disk

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 42

Slide 85

RAID 2 (redundancy through Hamming code):

b0 b1 b2 b3 f0(b) f1(b) f2(b)

➜ strips are very small (single byte or word)

➜ error correction code across corresponding bit positions

➜ for n disks, log2n redundancy

➜ expensive

➜ high data rate, but only single request

Slide 86

RAID 3 (bit-interleaved parity):

b0 b1 b2 b3 P(b)

➜ strips are very small (single byte or word)

➜ simple parity bit based redundancy

➜ error detection

➜ partial error correction (if offender is known)

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 43

Slide 87

RAID 4 (block-level parity):

block 12

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 11

Slide 88

RAID 5 (block-level distributed parity):

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

P(0-3)

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 44

Slide 89

RAID 6 (dual redundancy):

block 12

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 45

