Interactive Scheduling

COMP3231 04s1 1

THE UMIVERSITY O
MEW SOUTH WALES

Round Robin Scheduling

» Each process is given a timeslice to run in

* When the timeslice expires, the next
process preempts the current process,
and runs for its timeslice, and so on

* Implemented
— A ready queue
— A regular timer interrupt

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 3

Two Level Scheduling

* Interactive systems commonly employ
two-level scheduling
— CPU scheduler and Memory Scheduler
* Memory scheduler was covered in VM
— We will focus on CPU scheduling

COMP3231 04s1 2

THE UMIVERSITY O
MEW SOUTH WALES

Our Earlier Example

* 5 Process
[ITTTTT] .
— Process 1 arrives
J2:|:|:| slightly before process
2, etc...
I3 — All are immediately
runnable
W 1 1] — Execution times
indicated by scale on
EEEEEE

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 4

Round Robin Schedule

i]]
n []

13]]
14 L]]]
35 L]]

0o

D Timeslice = 1 unit

O ogd

0 2 4 6 8 10 12 14 16 18

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 5

20

THE UMIVERSITY O
MEW SOUTH WALES

Round Robin Schedule

LEEE T

12 (111 Timeslice = 3 units

J3 D:‘

s [T

5 IO OO

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 6

THE UMIVERSITY O
MEW SOUTH WALES

Round Robin
* Pros

— Fair, easy to implement
+ Con
— Assumes everybody is equal
+ Issue: What should the timeslice be?
— Too short
« Waste a lot of time switching between processes
+ Example: timeslice of 4ms with 1 ms context switch = 20% round
robin overhead
— Too long
« System is not responsive
+ Example: timeslice of 100ms

— If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

+ Degenerates into FCFS if timeslice longer than burst length

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 7

Example

1 Dj:‘ « 5 Jobs

— Job number equals
priority

12

D:Ij — Priority 1 > priority 5

13 (1] — Release and execution
times as shown

W LTI IT]

s T TTTT]

* Priority-driven
0 2 4 6 8 10 12 14 16 18 20

preemptively
scheduled

COMP3231 04s1 9

¥

Priorities

» Each Process (or thread) is associated with a
priority

» Provides basic mechanism to influence a
scheduler decision:
— Scheduler will always chooses a thread of higher

priority over lower priority

* Priorities can be defined internally or externally
— Internal: e.g. I/O bound or CPU bound
— External: e.g. based on importance to the user

THE L COMP3231 04s1 8

ERSITY OF
MEW SOUTH WALES

Example

n (1T
n (ILT]

13 1]

W LI 1T

s [T T[]

0 2 4 6 8 10 12 14 16 18 20

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 11

¥

Example

N (111
2 (111

J3 (1]

W LI T 1T

s TTTTT]

0 2 4 6 8 10 12 14 16 18 20

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 10

¥

Example

n (LT
” (111

3 11

o [ITTT 171

s LTI 1]

0 2 4 6 8 10 12 14 16 18 20

THE URNIVERSITY (3 COMP3231 04s1 12
MEW SOUTH WALES

Example

¥

NEW SOUTH WALES

i LT
) L]
1 CL]
W LLIT 1T
s L LT T
0 2 4 6 8 10 12 14 16 18 20
-E THE UISIVERSITY O COMP3231 04s1 13
B e SOLTH Wil ke
Example
I LT
» [T
3 (1]
wo L] [T IT]
s 1] [[[]
0 2 4 6 8 10 12 14 16 18 20
-E THE UISIVERSITY O COMP3231 04s1 15
B e SOLTH Wil ke
Example
n [T 1]
) L]
13] [
7 [1]
s 1] [TTT]
0 2 4 6 8 10 12 14 16 18 20
THE URNIVERSITY (3 COMP3231 04s1 17

¥

NEW SOUTH WALES

Example
n CIT]
2 LI L]
5 mE
W (ITTI0
s 1] [[T[]
0 2 4 6 8 10 12 14 16 18 20
i Qlll\!\‘\:t'llrllil'-l\l‘!;llﬂ_ COMP3231 04s1 14
Example
I CIT]
2 CLT]
3] [
Z [[]]
s 1] [TTT]
0 2 4 6 8 10 12 14 16 18 20
i Qlll‘}\‘\:t'llrllirl\l‘!;lllrnl_ COMP3231 04s1 16
Example
n LI
2 L]
13]]
Z [T T
s 1] [TTT]
0 2 4 6 8 10 12 14 16 18 20
THE URNIVERSITY (3 COMP3231 04s1 18

Example

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1

i L]

n (11 [

13]]

2 [T 171

s 1] [TTT1]

0 2 4 6 8 10 12 14 16 18 20

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1

Example
n (111
”n L1 L]
13]]
W [[T 1T
i 1] [TTT1]
0 2 4 6 8 10 12 14 16 18 20

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1

Example
i RN
) L[] U
13]]
W 1] L 111
s 1] [(TTT]
0 2 4 6 8§ 10 12' 14 16 18 20

THE UMIVERSITY O
NEW SOUTH WALES

Example

i [IT]

n (1] []

13]]

Z [T IT]

s 1] [TTT]

0 2 4 6 8 0 12 14 16 18 20
E Qlll\!\‘\:t'llrllil'-l\l‘!;llﬂ_ COMP3231 04s1 20
Example

i [IT]

n [r1 o

3]]

W L] [T IT]

i 1] [TTT]

0 2 4 6 8 10 2 14 16 18 20
E QIII‘\}\‘\:EEIIDI;I'-I\I‘E;IIIJL COMP3231 04s1 22
Example

N LLL]

» (1] 0

AK]]]
Z CLTT]
s 1] [TTT]

0 2 4 6 8 10 12 14 16 18 20
COMP3231 04s1 24

THE UMIVERSITY O
NEW SOUTH WALES

Example

n (1]

” L[]]

13]]

W [LT

s 1] [TTT]

0 2 4 6 8 10 12 14 16 18 20

E Qlll\!\‘\:t'llrllil'-l\l‘!;llﬂ_ COMP3231 04s1 25

Example

n (1]

” L1 U]

13]]

W [CL 1T

s 1] CITT]

0 2 4 6 8 10 12 14 16" 18 20

E Qlll‘_l\‘\:hlrtlalkl\l‘;llﬁl COMP3231 04s1 27

Example

n CLT]

) L[] U

13]]

W [LT 1T

s 1] CITT]

0 2 4 6 8 10 12 14 16 18 20
COMP3231 04s1 29

THE UMIVERSITY O
NEW SOUTH WALES

Example
n LT
J2 D:‘ D
13]]
W [LT TIT]
s] [(TTT]
0 2 4 6 8 10 12 14 16 18 20
E T e =
Example
n LT
n (1] U]
3]]
W [CL 1T
s] HEEN
0 2 4 6 8 10 12 14 16 8 20
E T e s
Example
n LI 1]
J2 D:‘ D
13]]
W [LT 1T
s] LT
0 2 4 6 8 10 12 14 16 18 20
CoMpaza1 o4 2

E

Priorities

Queue Runable processes
headers

Priority 2 —D

Priority 1

(Highest priority)

{Lowest priority)

+ Usually implemented by multiple priority queues, with
round robin on each queue
« Con
— Low priorities can starve
» Need to adapt priorities periodically
— Based on ageing or execution history

THE UISIVERSITY O COMP3231 04s1 31

NEW SOUTH WALES

Traditional UNIX Scheduler

. Two-level scheduler Fighast
— High-level scheduler priority 2L
schedules processes :
between memory and = Waiting for disk L'O MO process vaitng
disk 3 Waiing for disk buter in karnal mada
— Low-level scheduler is 2 Wiaiting for terminal input
CPU scheduler -1 Viaiting for tesmirsal output [
. Based on a multi- @ Winiting for child to exist
Ie_vel queue str_ucture o User priority 0
with round robin at) User pricrity 1 >
each level Process waiting|
2 User priority 2 in user made
3 User priority 3 —
=3 s a2
Lowest }
prlcrity Process queved
an priority level 3
COMP3231 04s1 32

THE UMIVERSITY O
NEW SOUTH WALES

.

THE UMIVERSITY O
NEW SOUTH WALES

Traditional UNIX Scheduler

The highest priority (lower
number) is scheduled
Priorities are re-calculated once i

> r pricaity [A
per second, and re-inserted in [I I
appropriate queue + Wotngiordsk 10 1—C0 prorggg wamng
. . P P I kel mode |
— Avoid starvation of low priority et g bite
threads 2| ataty
) 1| walting for terminal sutput__[—C>
— Penalise CPU-bound threads i Wl o cl o
o Liser peicity & |
1 User picaity 8 ==
z User priosity 2 P'::: ——
N . o
= i & }
Lowest
priarity Process queued
o pririty lavel 3
COMP3231 04s1 33

Traditional UNIX Scheduler

. Priority = CPU_usage +nice +base
- CPU_usage = number of clock ticks
Decays over time to avoid righest
permanently penalising the process ~ miesitr [=L
- Nice is a value given to the process s I
by a user to permanently boost or
reduce its priority
Reduce priority of background jobs
- Base is a set of hardwired, negative
values used to boost priority of I/0

Winting lor disk 11D

Waiting for clak butter
Wisitie o |

Weking o it compen__ |-

Waiting for child 1o exist

W wm =00 2k b ok

bound system activities Uiser piority 0 |
Swapper, disk 1/0, Character /0 Liser peicrity 1t ==
Frocess waiting
User priosity 2 i user mode
User priosity 3 >
= : E-3
Lewast
priotity Process queued
on pricrity el 3
COMP3231 04s1 34

THE UMIVERSITY O
NEW SOUTH WALES

THE UMIVERSITY O
NEW SOUTH WALES

Some Issues with Priorities

Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).
» Adaption is:
— usually ad-hoc,
* hence poorly understood, and unpredictable
— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU

» No way for applications to trade CPU time

COMP3231 04s1 35

Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource
— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.

COMP3231 04s1 36

THE UMIVERSITY O
NEW SOUTH WALES

Lottery Scheduling

+ Advantages
— Simple to implement
— Highly responsive (can reallocate tickets held)

— Tickets can be traded to implement individual
scheduling policy between co-operating
threads

E THE UISIVERSITY O COMP3231 04s1 37
MEW SOUTH WALES

Example Lottery Scheduling

» Four process running concurrently
— Process A: 15% CPU
— Process B: 25% CPU
— Process C: 5% CPU
— Process D: 55% CPU

* How many tickets should be issued to
each?

Lottery Scheduling Performance

Observed performance of 15
two processes with
varying ratios of tickets

wil Meration Rates

THbsary
-

E THE UISIVERSITY O COMP3231 04s1 39
MEW SOUTH WALES

E THE UISIVERSITY O COMP3231 04s1 38
MEW SOUTH WALES

Fair-Share Scheduling

» So far we have treated processes as individuals

» Assume two users
— One user has 1 process
— Second user has 9 processes

* The second user gets 90% of the CPU

» Some schedulers consider the owner of the process in
determining which process to schedule

— E.g., for the above example we could schedule the first user's
process 9 times more often than the second user’s processes

» Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler

E THE UISIVERSITY O COMP3231 04s1 40
MEW SOUTH WALES

