Interactive Scheduling
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Round Robin Scheduling

» Each process is given a timeslice to run in

* When the timeslice expires, the next
process preempts the current process,
and runs for its timeslice, and so on

* Implemented
— A ready queue
— A regular timer interrupt
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Two Level Scheduling

* Interactive systems commonly employ
two-level scheduling
— CPU scheduler and Memory Scheduler
* Memory scheduler was covered in VM
— We will focus on CPU scheduling
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Our Earlier Example
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Round Robin Schedule
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Round Robin Schedule
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Round Robin
* Pros

— Fair, easy to implement
+ Con
— Assumes everybody is equal
+ Issue: What should the timeslice be?
— Too short
« Waste a lot of time switching between processes
+ Example: timeslice of 4ms with 1 ms context switch = 20% round
robin overhead
— Too long
« System is not responsive
+ Example: timeslice of 100ms

— If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

+ Degenerates into FCFS if timeslice longer than burst length
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Example

1 Dj:‘ « 5 Jobs

— Job number equals
priority

12

D:Ij — Priority 1 > priority 5

13 (1] — Release and execution
times as shown
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scheduled
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Priorities

» Each Process (or thread) is associated with a
priority

» Provides basic mechanism to influence a
scheduler decision:
— Scheduler will always chooses a thread of higher

priority over lower priority

* Priorities can be defined internally or externally
— Internal: e.g. I/O bound or CPU bound
— External: e.g. based on importance to the user
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Priorities

Queue Runable processes
headers

Priority 2 —D

Priority 1

(Highest priority)

{Lowest priority)

+ Usually implemented by multiple priority queues, with
round robin on each queue
« Con
— Low priorities can starve
» Need to adapt priorities periodically
— Based on ageing or execution history
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Traditional UNIX Scheduler

. Two-level scheduler Fighast
—  High-level scheduler priority 2L
schedules processes :
between memory and = Waiting for disk L'O MO process vaitng
disk 3 Waiing for disk buter in karnal mada
—  Low-level scheduler is 2 Wiaiting for terminal input
CPU scheduler -1 Viaiting for tesmirsal output [
. Based on a multi- @ Winiting for child to exist
Ie_vel queue str_ucture o User priority 0
with round robin at ) User pricrity 1 >
each level Process waiting|
2 User priority 2 in user made
3 User priority 3 —
=3 s a2
Lowest }
prlcrity Process queved
an priority level 3
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Traditional UNIX Scheduler

The highest priority (lower
number) is scheduled
Priorities are re-calculated once i

> r pricaity [ A
per second, and re-inserted in [ I I
appropriate queue + Wotngiordsk 10 1—C0  prorggg wamng
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threads 2| ataty
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Traditional UNIX Scheduler

. Priority = CPU_usage +nice +base
- CPU_usage = number of clock ticks
Decays over time to avoid righest
permanently penalising the process ~ miesitr [ =L
- Nice is a value given to the process s I
by a user to permanently boost or
reduce its priority
Reduce priority of background jobs
- Base is a set of hardwired, negative
values used to boost priority of I/0

Winting lor disk 11D
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Waiting for child 1o exist
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bound system activities Uiser piority 0 |
Swapper, disk 1/0, Character /0 Liser peicrity 1t ==
Frocess waiting
User priosity 2 i user mode
User priosity 3 >
= : E-3
Lewast
priotity Process queued
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Some Issues with Priorities

Require adaption over time to avoid starvation
(not considering hard real-time which relies on
strict priorities).
» Adaption is:
— usually ad-hoc,
* hence poorly understood, and unpredictable
— Gradual, hence unresponsive
Difficult to guarantee a desired share of the CPU

» No way for applications to trade CPU time
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Lottery Scheduling

» Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource
— Example: CPU time

» Access to a resource is via “drawing” a
lottery winner.

— The more tickets a process possesses, the
higher chance the process has of winning.
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Lottery Scheduling

+ Advantages
— Simple to implement
— Highly responsive (can reallocate tickets held)

— Tickets can be traded to implement individual
scheduling policy between co-operating
threads
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Example Lottery Scheduling

» Four process running concurrently
— Process A: 15% CPU
— Process B: 25% CPU
— Process C: 5% CPU
— Process D: 55% CPU

* How many tickets should be issued to
each?

Lottery Scheduling Performance

Observed performance of 15
two processes with
varying ratios of tickets

wil Meration Rates

THbsary
-
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Fair-Share Scheduling

» So far we have treated processes as individuals

» Assume two users
— One user has 1 process
— Second user has 9 processes

* The second user gets 90% of the CPU

» Some schedulers consider the owner of the process in
determining which process to schedule

— E.g., for the above example we could schedule the first user's
process 9 times more often than the second user’s processes

» Many possibilities exist to determine a fair schedule
— E.g. Appropriate allocation of tickets in lottery scheduler
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