
1COMP3231 04s1

Interactive Scheduling

2COMP3231 04s1

Two Level Scheduling

• Interactive systems commonly employ
two-level scheduling
– CPU scheduler and Memory Scheduler

• Memory scheduler was covered in VM
– We will focus on CPU scheduling

3COMP3231 04s1

Round Robin Scheduling

• Each process is given a timeslice to run in
• When the timeslice expires, the next

process preempts the current process,
and runs for its timeslice, and so on

• Implemented
– A ready queue
– A regular timer interrupt

4COMP3231 04s1

Our Earlier Example
• 5 Process

– Process 1 arrives
slightly before process
2, etc…

– All are immediately
runnable

– Execution times
indicated by scale on
x-axis

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

5COMP3231 04s1

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 1 unit

6COMP3231 04s1

Round Robin Schedule

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

Timeslice = 3 units

7COMP3231 04s1

Round Robin
• Pros

– Fair, easy to implement
• Con

– Assumes everybody is equal
• Issue: What should the timeslice be?

– Too short
• Waste a lot of time switching between processes
• Example: timeslice of 4ms with 1 ms context switch = 20% round

robin overhead
– Too long

• System is not responsive
• Example: timeslice of 100ms

– If 10 people hit “enter” key simultaneously, the last guy to run will only
see progress after 1 second.

• Degenerates into FCFS if timeslice longer than burst length

8COMP3231 04s1

Priorities
• Each Process (or thread) is associated with a

priority
• Provides basic mechanism to influence a

scheduler decision:
– Scheduler will always chooses a thread of higher

priority over lower priority
• Priorities can be defined internally or externally

– Internal: e.g. I/O bound or CPU bound
– External: e.g. based on importance to the user

9COMP3231 04s1

Example
• 5 Jobs

– Job number equals
priority

– Priority 1 > priority 5
– Release and execution

times as shown
• Priority-driven

preemptively
scheduled

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

10COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

11COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

12COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

13COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

14COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

15COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

16COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

17COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

18COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

19COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

20COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

21COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

22COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

23COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

24COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

25COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

26COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

27COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

28COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

29COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

30COMP3231 04s1

Example

0 2 4 106 8 12 14 201816

J1

J2

J3

J4

J5

31COMP3231 04s1

Priorities

• Usually implemented by multiple priority queues, with
round robin on each queue

• Con
– Low priorities can starve

• Need to adapt priorities periodically
– Based on ageing or execution history

32COMP3231 04s1

Traditional UNIX Scheduler
• Two-level scheduler

– High-level scheduler
schedules processes
between memory and
disk

– Low-level scheduler is
CPU scheduler

• Based on a multi-
level queue structure
with round robin at
each level

33COMP3231 04s1

Traditional UNIX Scheduler
• The highest priority (lower

number) is scheduled
• Priorities are re-calculated once

per second, and re-inserted in
appropriate queue

– Avoid starvation of low priority
threads

– Penalise CPU-bound threads

34COMP3231 04s1

Traditional UNIX Scheduler
• Priority = CPU_usage +nice +base

– CPU_usage = number of clock ticks
• Decays over time to avoid

permanently penalising the process
– Nice is a value given to the process

by a user to permanently boost or
reduce its priority

• Reduce priority of background jobs
– Base is a set of hardwired, negative

values used to boost priority of I/O
bound system activities

• Swapper, disk I/O, Character I/O

35COMP3231 04s1

Some Issues with Priorities
• Require adaption over time to avoid starvation

(not considering hard real-time which relies on
strict priorities).

• Adaption is:
– usually ad-hoc,

• hence poorly understood, and unpredictable
– Gradual, hence unresponsive

• Difficult to guarantee a desired share of the CPU
• No way for applications to trade CPU time

36COMP3231 04s1

Lottery Scheduling

• Each process is issued with “lottery
tickets” which represent the right to
use/consume a resource
– Example: CPU time

• Access to a resource is via “drawing” a
lottery winner.
– The more tickets a process possesses, the

higher chance the process has of winning.

37COMP3231 04s1

Lottery Scheduling

• Advantages
– Simple to implement
– Highly responsive (can reallocate tickets held)
– Tickets can be traded to implement individual

scheduling policy between co-operating
threads

38COMP3231 04s1

Example Lottery Scheduling

• Four process running concurrently
– Process A: 15% CPU
– Process B: 25% CPU
– Process C: 5% CPU
– Process D: 55% CPU

• How many tickets should be issued to
each?

39COMP3231 04s1

Lottery Scheduling Performance
Observed performance of

two processes with
varying ratios of tickets

40COMP3231 04s1

Fair-Share Scheduling
• So far we have treated processes as individuals
• Assume two users

– One user has 1 process
– Second user has 9 processes

• The second user gets 90% of the CPU
• Some schedulers consider the owner of the process in

determining which process to schedule
– E.g., for the above example we could schedule the first user’s

process 9 times more often than the second user’s processes

• Many possibilities exist to determine a fair schedule
– E.g. Appropriate allocation of tickets in lottery scheduler

