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What is Scheduling?

— On a multi-programmed system
 We may have more than one Ready process

— On a batch system
 We may have many jobs waiting to be run

— On a multi-user system

 We may have many users concurrently using the
system

* The scheduler decides who to run next.
— The process of choosing is called scheduling.
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Is scheduling important?

e |t IS not In certain scenarios

— If you have no choice

» Early systems
— Usually batching
— Scheduling algorithm simple
» Run next on tape or next on punch tape

— Only one thing to run
« Simple PCs
— Only ran a word processor, etc....

« Simple Embedded Systems

— TV remote control, washing machine, etc....
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Is scheduling important?

 |tis in most realistic scenarios

— Multitasking/Multi-user System

 Example
— Email daemon takes 2 seconds to process an email
— User clicks button on application.
« Scenario 1
— Run daemon, then application
» System appears really sluggish to the user
« Scenario 2
— Run application, then daemon

» Application appears really responsive, small email delay is
unnoticed

« Scheduling decisions can have a dramatic effect on the
perceived performance of the system
— Can also affect correctness of a system with deadlines
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Application Behaviour
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« Bursts of CPU usage alternate with periods of I/O
wait
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a) CPU-Bound process
Spends most of its computing
«  Time to completion largely determined by received CPU time
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b) I/O-Bound process

—  Spend most of its time waiting for I/O to complete
«  Small bursts of CPU to process I/O and request next I/O

—  Time to completion largely determined by I/O request time
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Observations
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Generally, technology is increasing CPU speed much
faster than I/O speed
= CPU bursts becoming shorter, 1/0 waiting is relatively constant
= Processes are becoming more 1/O bound
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« We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

Process can go from CPU- to I/O-bound (or vice versa)
in different phases of execution
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. Choosing to run an 1/O-bound process delays a CPU-bound
process by very little

. Choosing to run a CPU-bound process prior to an 1/0O-bound
process delays the next I/O request significantly
— No overlap of /O waiting with computation
—  Results in device (disk) not as busy as possible

=  Generally, favour I/O-bound processes over CPU-bound processes

=

=



When is scheduling performed?

— A new process
* Run the parent or the child?
— A process exits
* Who runs next?
— A process waits for I/O
* Who runs next?
— A process blocks on a lock
* Who runs next? The lock holder?
— An |/O interrupt occurs
 Who do we resume, the interrupted process or the process that was
waiting?
— On a timer interrupt? (See next slide)
« Generally, a scheduling decision is required when a
process (or thread) can no longer continue, or when an
activity results in more than one ready process.
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Preemptive versus Non-preemptive
Scheduling

Non-preemptive

— Once a thread is in the running state, it continues until it
completes, blocks on I/O, or voluntarily yields the CPU

— A single process can monopolised the entire system

Preemptive Scheduling

— Current thread can be interrupted by OS and moved to ready
state.

— Usually after a timer interrupt and process has exceeded its
maximum run time

« Can also be as a result of higher priority process that has become
ready (after 1/O interrupt).

— Ensures fairer service as single thread can’t monopolise the
system

* Requires a timer interrupt
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Categories of Scheduling Algorithms

* The choice of scheduling algorithm depends on the
goals of the application (or the operating system)
— No one algorithm suits all environments

* We can roughly categorise scheduling algorithms as
follows

— Batch Systems

» No users directly waiting, can optimise for overall machine
performance

— Interactive Systems

» Users directly waiting for their results, can optimise for users
perceived performance

— Realtime Systems

« Jobs have deadlines, must schedule such that all jobs (mostly) meet
their deadlines.
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Goals of Scheduling Algorithms

 All Algorithms

— Fairness
» Give each process a fair share of the CPU

— Policy Enforcement

* What ever policy chosen, the scheduler should
ensure it is carried out

— Balance/Efficiency
* Try to keep all parts of the system busy
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Goals of Scheduling Algorithms

« Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)

— Minimise turn-around time
* Turn-around time (T,)
— difference between time of completion and time of submission
— Or waiting time (T,,) + execution time (T,)
— Maximise CPU utilisation
« Keep the CPU busy
* Not as good a metric as overall throughput
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Goals of Scheduling Algorithms

 |nteractive Algorithms

— Minimise response time

* Response time is the time difference between issuing a
command and getting the result

— E.g selecting a menu, and getting the result of that selection
* Response time is important to the user’s perception of the
performance of the system.
— Provide Proportionality

* Proportionality is the user expectation that short jobs will
have a short response time, and long jobs can have a long
response time.

« Generally, favour short jobs
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Goals of Scheduling Algorithms

* Real-time Algorithms

— Must meet deadlines
« Each job/task has a deadline.

* A missed deadline can result in data loss or
catastrophic failure
— Aircraft control system missed deadline to apply brakes

— Provide Predictability

* For some apps, an occasional missed deadline is
okay
— E.g. DVD decoder

* Predictable behaviour allows smooth DVD
decoding with only rare skips
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Scheduling Algorithms

Batch Systems
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First-Come First-Served (FCFS)

 Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

— When a blocked jobs becomes ready, it is
placed at the end of the queue
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Example

* 5 Jobs

I — Job 1 arrives slightly
" before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 iIndicated by scale on

X-axis
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FCFS Schedule
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FCFS
* Pros

— Simple and easy to implement

« Cons

— 1/O-bound jobs wait for CPU-bound jobs

—=Favours CPU-bound processes

« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0 bound process can only issue a disk request per
second

» the I/O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when
I/O-bound process are ready, could allow 1/0O-bound process to

finish in 1000* average disk access time.
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Shortest Job First

* If we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy
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Our Previous Example

* 5 Jobs
I — Job 1 arrives slightly
" before job 2, etc...
— All are immediately
13 runnable
— Execution times
14 iIndicated by scale on
X-axis
J5
0 2 4 8 10 12 14 16 18 20
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Shortest Job First
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Shortest Job First

« Con
— May starve long jobs
— Needs to predict job length

* Pro

— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
of a, b, c, d.

* afinishes at time a, b finishesata +b, cata + b + ¢, and so
on

* Average turn-around time is (4a + 3b + 2¢ + d)/4

« Since a contributes most to average turn-around time, it

should be the shortest job.
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Shortest Remaining Time First

* A preemptive version of shortest job first

* When ever a new jobs arrive, choose the
one with the shortest remaining time first

— New short jobs get good service
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Example

. e 5Jobs
— Release and execution
times as shown
J2
J3
J4
J5
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Shortest Remaining Time First
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Scheduling in Batch Systems
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Three level scheduling
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Three Level Scheduling

* Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process
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Three Level Scheduling

« CPU scheduler

— Also called short-term scheduler

— Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), I/O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.
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Three Level Scheduling

 Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out

= THE UNIVERSITY OF COMP3231 04s1 39
il NEW SOUTH WALES




