Scheduling

SE THE UNIVERSITY OF COMP3231 04s1
eS| NEW SOUTH WALES

What is Scheduling?

— On a multi-programmed system
 We may have more than one Ready process

— On a batch system
 We may have many jobs waiting to be run

— On a multi-user system

 We may have many users concurrently using the
system

* The scheduler decides who to run next.
— The process of choosing is called scheduling.

THE UNIVERSITY OF COMP3231 04s1 2
Gl NEW SOUTH WALES

Is scheduling important?

e |t IS not In certain scenarios

— If you have no choice

» Early systems
— Usually batching
— Scheduling algorithm simple
» Run next on tape or next on punch tape

— Only one thing to run
« Simple PCs
— Only ran a word processor, etc....

« Simple Embedded Systems

— TV remote control, washing machine, etc....

THE UNIVERSITY OF COMP3231 04s1
E%s NEW SOUTH WALES

Is scheduling important?

 |tis in most realistic scenarios

— Multitasking/Multi-user System

 Example
— Email daemon takes 2 seconds to process an email
— User clicks button on application.
« Scenario 1
— Run daemon, then application
» System appears really sluggish to the user
« Scenario 2
— Run application, then daemon

» Application appears really responsive, small email delay is
unnoticed

« Scheduling decisions can have a dramatic effect on the
perceived performance of the system
— Can also affect correctness of a system with deadlines

TN THE UNIVERSITY OF COMP3231 04s1 4
gl NEW SOUTH WALES

Application Behaviour

@ | —] — —— |

Long CPU burst \

Waiting for I/O

Short CPU burst \
/ I Il

— n n M | — n —
() [LI LI LI L LI LI LI LI LI LI

Time

« Bursts of CPU usage alternate with periods of I/O
wait
THE UNIVERSITY OF COMP3231 04s1 5

NEW SOUTH WALES

Application Behaviour

@ | —— — —— |

Long CPU burst \

Waiting for I/O

Short CPU burst \
/]
LI

— n n M | — —
() [LI LI LI L LI LI LI

I
]

3

Time
_>

a) CPU-Bound process
Spends most of its computing
« Time to completion largely determined by received CPU time

THE UNIVERSITY OF COMP3231 04s1
Gl NEW SOUTH WALES

Application Behaviour

@ | —— — ——

Long CPU burst \

Waiting for I/O

Short CPU burst \
/ I 1 I
LI

() [{1 {1 [LI []

I
]

]

Time

b) I/O-Bound process

— Spend most of its time waiting for I/O to complete
« Small bursts of CPU to process I/O and request next I/O

— Time to completion largely determined by I/O request time

B THE UNIVERSITY OF COMP3231 04s1
gl NEW SOUTH WALES

Observations

@ I — —] |

Long CPU burst \

Waiting for I/O

Short CPU burst \
/ 1 I 1 Il 1 n I

1 Il I
(b) I: L U u D | | S|] | . u L

Time
_>.

Generally, technology is increasing CPU speed much
faster than I/O speed
= CPU bursts becoming shorter, 1/0 waiting is relatively constant
= Processes are becoming more 1/O bound

TN THE UNIVERSITY OF COMP3231 04s1 8
gl NEW SOUTH WALES

Observations

@ I — —] |

Long CPU burst \

Waiting for I/O

Short CPU burst \
() CF——"TF—1 1 —l

I [I I 1
u | | | S|] | . u 8

Time
_>.

« We need a mix of CPU-bound and I/O-bound processes
to keep both CPU and I/O systems busy

Process can go from CPU- to I/O-bound (or vice versa)
in different phases of execution

THE UNIVERSITY OF COMP3231 04s1 9
Gl NEW SOUTH WALES

Observations

@ | — — — |

Long CPU burst \
Waiting for I/O
Short CPU burst \
0 [L] 1 1 (—1 L — { ——I
Time
—_—

. Choosing to run an 1/O-bound process delays a CPU-bound
process by very little

. Choosing to run a CPU-bound process prior to an 1/0O-bound
process delays the next I/O request significantly
— No overlap of /O waiting with computation
— Results in device (disk) not as busy as possible

= Generally, favour I/O-bound processes over CPU-bound processes

=

=

When is scheduling performed?

— A new process
* Run the parent or the child?
— A process exits
* Who runs next?
— A process waits for I/O
* Who runs next?
— A process blocks on a lock
* Who runs next? The lock holder?
— An |/O interrupt occurs
 Who do we resume, the interrupted process or the process that was
waiting?
— On a timer interrupt? (See next slide)
« Generally, a scheduling decision is required when a
process (or thread) can no longer continue, or when an
activity results in more than one ready process.

TN THE UNIVERSITY OF COMP3231 04s1 11
gl NEW SOUTH WALES

Preemptive versus Non-preemptive
Scheduling

Non-preemptive

— Once a thread is in the running state, it continues until it
completes, blocks on I/O, or voluntarily yields the CPU

— A single process can monopolised the entire system

Preemptive Scheduling

— Current thread can be interrupted by OS and moved to ready
state.

— Usually after a timer interrupt and process has exceeded its
maximum run time

« Can also be as a result of higher priority process that has become
ready (after 1/O interrupt).

— Ensures fairer service as single thread can’t monopolise the
system

* Requires a timer interrupt

B THE UNIVERSITY OF COMP3231 04s1 12
el NEW SOUTH WALES

Categories of Scheduling Algorithms

* The choice of scheduling algorithm depends on the
goals of the application (or the operating system)
— No one algorithm suits all environments

* We can roughly categorise scheduling algorithms as
follows

— Batch Systems

» No users directly waiting, can optimise for overall machine
performance

— Interactive Systems

» Users directly waiting for their results, can optimise for users
perceived performance

— Realtime Systems

« Jobs have deadlines, must schedule such that all jobs (mostly) meet
their deadlines.

TN THE UNIVERSITY OF COMP3231 04s1 13
gl NEW SOUTH WALES

Goals of Scheduling Algorithms

 All Algorithms

— Fairness
» Give each process a fair share of the CPU

— Policy Enforcement

* What ever policy chosen, the scheduler should
ensure it is carried out

— Balance/Efficiency
* Try to keep all parts of the system busy

= THE UNIVERSITY OF COMP3231 04s1 14
ERE NEw SOUTH WALES

Goals of Scheduling Algorithms

« Batch Algorithms

— Maximise throughput
« Throughput is measured in jobs per hour (or similar)

— Minimise turn-around time
* Turn-around time (T,)
— difference between time of completion and time of submission
— Or waiting time (T,,) + execution time (T,)
— Maximise CPU utilisation
« Keep the CPU busy
* Not as good a metric as overall throughput

= THE UNIVERSITY OF COMP3231 04s1 15
B NEW SOUTH WALES

Goals of Scheduling Algorithms

 |nteractive Algorithms

— Minimise response time

* Response time is the time difference between issuing a
command and getting the result

— E.g selecting a menu, and getting the result of that selection
* Response time is important to the user’s perception of the
performance of the system.
— Provide Proportionality

* Proportionality is the user expectation that short jobs will
have a short response time, and long jobs can have a long
response time.

« Generally, favour short jobs

THE UNIVERSITY OF COMP3231 04s1 16
S8l NEW SOUTH WALES

Goals of Scheduling Algorithms

* Real-time Algorithms

— Must meet deadlines
« Each job/task has a deadline.

* A missed deadline can result in data loss or
catastrophic failure
— Aircraft control system missed deadline to apply brakes

— Provide Predictability

* For some apps, an occasional missed deadline is
okay
— E.g. DVD decoder

* Predictable behaviour allows smooth DVD
decoding with only rare skips

THE UNIVERSITY OF COMP3231 04s1 17
E%s NEW SOUTH WALES

Scheduling Algorithms

Batch Systems

!- THE UNIVERSITY OF COMP3231 04s1
NEW SOUTH WALES

18

First-Come First-Served (FCFS)

 Algorithm

— Each job is placed in single queue, the first
job in the queue is selected, and allowed to
run as long as it wants.

— If the job blocks, the next job in the queue is
selected to run

— When a blocked jobs becomes ready, it is
placed at the end of the queue

= THE UNIVERSITY OF COMP3231 04s1 19
il NEW SOUTH WALES

Example

* 5 Jobs

I — Job 1 arrives slightly
" before job 2, etc...

— All are immediately
13 runnable

— Execution times
14 iIndicated by scale on

X-axis

J5

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF COMP3231 04s1 20
Gl NEW SOUTH WALES

FCFS Schedule

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 21

FCFS
* Pros

— Simple and easy to implement

« Cons

— 1/O-bound jobs wait for CPU-bound jobs

—=Favours CPU-bound processes

« Example:

— Assume 1 CPU-bound process that computes for 1 second and
blocks on a disk request. It arrives first.

— Assume an I/O bound process that simply issues a 1000
blocking disk requests (very little CPU time)

— FCFS, the I/0 bound process can only issue a disk request per
second

» the I/O bound process take 1000 seconds to finish

— Another scheme, that preempts the CPU-bound process when
I/O-bound process are ready, could allow 1/0O-bound process to

finish in 1000* average disk access time.
COMP3231 04s1 22

Shortest Job First

* If we know (or can estimate) the execution
time a priori, we choose the shortest job
first.

* Another non-preemptive policy

!==_ THE UNIVERSITY OF COMP3231 04s1 23
el NEW SOUTH WALES

Our Previous Example

* 5 Jobs
I — Job 1 arrives slightly
" before job 2, etc...
— All are immediately
13 runnable
— Execution times
14 iIndicated by scale on
X-axis
J5
0 2 4 8 10 12 14 16 18 20

SErY THE UNIVERSITY OF
B NEW SOUTH WALES

COMP3231 04s1 24

Shortest Job First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 25

Shortest Job First

« Con
— May starve long jobs
— Needs to predict job length

* Pro

— Minimises average turnaround time (if, and only if, all
jobs are available at the beginning)

— Example: Assume for processes with execution times
of a, b, c, d.

* afinishes at time a, b finishesata +b, cata + b + ¢, and so
on

* Average turn-around time is (4a + 3b + 2¢ + d)/4

« Since a contributes most to average turn-around time, it

should be the shortest job.

= THE UNIVERSITY OF COMP3231 04s1 26
@8S NEW SOUTH WALES

Shortest Remaining Time First

* A preemptive version of shortest job first

* When ever a new jobs arrive, choose the
one with the shortest remaining time first

— New short jobs get good service

!==_ THE UNIVERSITY OF COMP3231 04s1 27
el NEW SOUTH WALES

Example

. e 5Jobs
— Release and execution
times as shown
J2
J3
J4
J5

0 2 4 6 8 10 12 14 16 18 20

THE UNIVERSITY OF COMP3231 04s1 28
Gl NEW SOUTH WALES

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 29

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 30

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 31

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 32

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 33

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 34

Shortest Remaining Time First

J1

J2

J3

J4

J5

0 2 4 6 8 10 12 14 16 18 20

COMP3231 04s1 35

Scheduling in Batch Systems

CPU O
ﬁ*(— CPU scheduler
Arriving
job
J Input 00000 N
J' queue N
Main
O [IIooll] m——> Memory < >
A Ry
e
Admission Memory Disk
scheduler scheduler

Three level scheduling

COMP3231 04s1 36

Three Level Scheduling

* Admission Scheduler
— Also called long-term scheduler

— Determines when jobs are admitted into the
system for processing

— Controls degree of multiprogramming

— More processes = less CPU available per
process

= THE UNIVERSITY OF COMP3231 04s1
Sl NEW SOUTH WALES

37

Three Level Scheduling

« CPU scheduler

— Also called short-term scheduler

— Invoked when ever a process blocks or is
released, clock interrupts (if preemptive
scheduling), I/O interrupts.

— Usually, this scheduler is what we are
referring to if we talk about a scheduler.

= THE UNIVERSITY OF COMP3231 04s1 38
il NEW SOUTH WALES

Three Level Scheduling

 Memory Scheduler
— Also called medium-term scheduler

— Adjusts the degree of multiprogramming via
suspending processes and swapping them
out

= THE UNIVERSITY OF COMP3231 04s1 39
il NEW SOUTH WALES

