Chapter 3

Deadlocks

3.1. Resource

3.2. Introduction to deadlocks

3.3. The ostrich algorithm

3.4. Deadlock detection and recovery
3.5. Deadlock avoidance

3.6. Deadlock prevention

3.7. Other issues

E THE UISIVERSITY O COMP3231 04s1 1
MEW SOUTH WALES

Resources

» Deadlocks occur when ...
— processes are granted exclusive access to devices
— we refer to these devices generally as resources
* Preemptable resources
— can be taken away from a process with no ill effects
* Nonpreemptable resources
— will cause the process to fail if taken away

E THE UISIVERSITY O COMP3231 04s1 3
MEW SOUTH WALES

Resources

» Examples of computer resources
— printers
— tape drives
— Tables in a database

» Processes need access to resources in reasonable
order

» Suppose a process holds resource A and requests
resource B
— at same time another process holds B and requests A
— both are blocked and remain so

E THE UISIVERSITY O COMP3231 04s1 2
MEW SOUTH WALES

Resources

» Sequence of events required to use a resource
1. request the resource
2. use the resource
3. release the resource

*  Must wait if request is denied
— requesting process may be blocked
— may fail with error code

Example Resource usage

semaphore res_1, res_2; semaphore res_1, res_2;

void proc_A() { void proc A() {
down (&res_1) ; down (sres_1) ;
down (&res_2) ; down (&res_2) ;
use_both_res() ; use_both_res() ;
up (&res_2) ; up (&res_2) ;
up (éres_1) ; up (&res_1) ;

} }

void proc_B() { void proc_B() {
down (&res_1) ; down (&res_2) ;
down (&res_2) ; down (&res_1) ;
use_both_res() ; use_both_res() ;
up (&res_2) ; up (&res_1) ;
up (&res_1) ; up (&res_2) ;

} }

E THE URNIVERSITY (3 COMP3231 04s1 5
MEW SOUTH WALES

E THE UISIVERSITY O COMP3231 04s1 4
MEW SOUTH WALES

Introduction to Deadlocks

» Formal definition :
A set of processes is deadlocked if each process in the set is

waiting for an event that only another process in the set can
cause

» Usually the event is release of a currently held
resource
» None of the processes can ...
—run
— release resources
— be awakened

E THE URNIVERSITY (3 COMP3231 04s1 6
MEW SOUTH WALES




Four Conditions for Deadlock

1. Mutual exclusion condition

each resource assigned to 1 process or is available
2 Hold and wait condition

process holding resources can request additional
s No preemption condition

previously granted resources cannot forcibly taken
away

. Circular wait condition
* must be a circular chain of 2 or more processes

+ each is waiting for resource held by next member of
the chain

-E THE UISIVERSITY O COMP3231 04s1 7
MEW SOUTH WALES

Deadlock Modeling

Deadlock Modeling

* Modeled with directed graphs

® ] ®
® ©
{a) by (e}

— resource R assigned to process A
— process B is requesting/waiting for resource S

— process C and D are in deadlock over resources T
and U

-E THE UISIVERSITY O COMP3231 04s1 8
MEW SOUTH WALES

Deadlock Modeling

1.

2.

3.

Strategies for dealing with Deadlocks

just ignore the problem altogether
detection and recovery
dynamic avoidance

Facuest R
Recuest 5
Fnleas
Fuleass 5

fa)

" R
= 0oo
:

Releasa T
(1]

(0JOXO

Racranat T
Racranat R
Fislaase T
Fisloase A

ic}

0JOXO

careful resource allocation
4 prevention
* negating one of the four necessary conditions

-E THE UISIVERSITY O COMP3231 04s1 9
MEW SOUTH WALES

Deadlock Modeling

1. Arequests R

S Rioencs ®EeEEe ®eG0G ®OGE
4. C requests
5. Areleases R
® otedok LB [R]
(L] U] (mj n)
® ®E0E
(5]
©) @
E § How deadlock can be avoided

a.l?; o BEE O
e ®O ® @
Mo S5 A
_E ' How deadlock occurs

The Ostrich Algorithm

* Pretend there is no problem
+ Reasonable if
— deadlocks occur very rarely

— cost of prevention is high
« Example of “cost”, only one process runs at a time

* UNIX and Windows takes this approach
« It's a trade off between

— Convenience (engineering approach)

— Correctness (mathematical approach)

-E THE URNIVERSITY (3 COMP3231 04s1 12
MEW SOUTH WALES




Detection with One Resource of Each Type

[e}— ®
@—-EF—@—-I—-

aéJ J

* Note the resource ownership and requests

» A cycle can be found within the graph, denoting
deadlock

-E ERSITY Cf COMP3231 04s1 13
NI SOUTH WAL e

What about resources with
multiple units?

* We need an approach for dealing with
resources that consist of more than a
single unit.

-E THE UISIVERSITY O COMP3231 04s1 14
MEW SOUTH WALES

Detection with Multiple Resources of Each

Type
Resources in existence Resources available
(Ey En Egy .. Ep) (A Ag Ay o AL)
Current allocation matrix Request matrix
c c € " Gy Ry R R ' Ry,

1 12 12
R R,

Co G G o G 21 ‘22 z "7 Pom
C Ci Gz G = Gy (Hm R. Ry - R,
{ Row 2 is what process 2 needs

Row n is current allocation
fo process n

Data structures needed by deadlock detection
algorithm

-E THE UISIVERSITY O COMP3231 04s1 15
MEW SOUTH WALES

Note the following invariant

Sum of current resource allocation +
resources available = resources that exist

Zn:Cl-j-FAj :E].

Detection with Multiple Resources of Each

5
& 5 & (gf’ &
Qe.ﬁ w‘“@&“‘ P #’6 & & ?p&)
P e 0 g® &
E=(4 2 3 1) A=(2 1 0 0}
Current allocaton matrix Regquest matrix
0010 2001 |
C=|2 001 R=|1 0 10
0120 2100 )

An example for the deadlock detection algorithm

-E ERSITY O COMP3231 04s1 17
NI SOUTH WAL e

-E THE LIV COMP3231 04s1 16
NEW SCIL |||\\\||

Detection Algorithm

1. Look for an unmarked process Pi, for
which the i-th row of R is less than or
equal to A

2. If found, add the i-th row of C to A, and
mark Pi. Go to step 1

3. If no such process exists, terminate.
Remaining processes are deadlocked

-E THE URNIVERSITY (3 COMP3231 04s1 18
MEW SOUTH WALES




Example Deadlock Detection

E=(4 2 3 1) A=2 1 0 0)
0 0 200 1
c={2 00 1 R=[1 01 0
0 0 2100
COMP3231 04s1 19

THE UMIVERSITY O
NEW SOUTH WALES

Example Deadlock Detection

E=(4 2 3 1) A=(2 2 2 0)

0010 200
C=[2 00 1 R=[1 01 0
=) (0 1 20 2100

COMP3231 04s1 21

THE UMIVERSITY O
NEW SOUTH WALES

Example Deadlock Detection

E=@4 2 3 1) A=4 2 2 1)
0010 200 1
m=C=(2 0 0 || mEmEEp1 0 1 0
= (0 0 2100
COMP3231 04s1 23

THE UMIVERSITY O
NEW SOUTH WALES

THE UMIVERSITY O
NEW SOUTH WALES

Example Deadlock Detection

a
I
N
o N o
- o o
o = o
Ne—
‘%
Il
)\
D= N
o o
= =
==
Ne—

COMP3231 04s1 20

THE UMIVERSITY O
B Al

Example Deadlock Detection

E=(4 2 3 1) A4=2 2 2 0)

0010 200
c=2 0 0 1 0 10
= (0 1 20 2100

COMP3231 04s1 22
EW SOLITH WALES

E

Example Deadlock Detection

E=4 2 31 A=4 2 2 1)
0010 2.0 01
==r={2 0 0 R={1 0 1 0
=) 01 2 0 2100
COMP3231 04s1 24

THE UMIVERSITY O
NEW SOUTH WALES




Example Deadlock Detection

E=(4 2 3 1) A=4 2 2 1)

00 1 0 mmm)2 00 I
=r=(2 0 1 R=l1 010
=) (0 0 2100

E THE UISIVERSITY O COMP3231 04s1 25
MEW SOUTH WALES

Example Deadlock Detection

E=(4 2 3 1 A=(4 2 3 )
= (001 0 2.0 0 1
=C=2 0 0 1 R=[1 01 0
= (0120 2 0 0

E THE UISIVERSITY O COMP3231 04s1 26
MEW SOUTH WALES

Example Deadlock Detection

« Algorithm terminates with no unmarked
processes
— We have no dead lock

E THE UISIVERSITY O COMP3231 04s1 27
MEW SOUTH WALES

Example 2: Deadlock Detection

» Suppose, P3 needs a CD-ROM as well as
2 Tapes and a Plotter

E=(4 2 3 1) A=2 1 0 0)
0010 200 1
C={2 0 0 1 R=/1 01 0
0120 210 1

Recovery from Deadlock

* Recovery through preemption
— take a resource from some other process
— depends on nature of the resource
» Recovery through rollback
— checkpoint a process periodically
— use this saved state
— restart the process if it is found deadlocked

E THE URNIVERSITY (3 COMP3231 04s1 29
MEW SOUTH WALES

E THE UISIVERSITY O COMP3231 04s1 28
MEW SOUTH WALES

Recovery from Deadlock

* Recovery through killing processes
— crudest but simplest way to break a deadlock
— kill one of the processes in the deadlock cycle
— the other processes get its resources

— choose process that can be rerun from the
beginning

E THE USNIVERSITY OF COMP3231 04s1 30
NEW SOUTH WALES




Deadlock Avoidance

* Instead of detecting deadlock, can we
simply avoid it?
—YES, but only if enough information is
available in advance.
* Maximum number of each resource required

COMP3231 04s1

THE UMIVERSITY O
NEW SOUTH WALES

31

Safe and Unsafe States

» A state is safe if
— The system is not deadlocked

— There exists a scheduling order that results in
every process running to completion, even if

they all request their maximum resources
immediately

COMP3231 04s1 33

THE UMIVERSITY O
NEW SOUTH WALES

Safe and Unsafe States

A requests one

extra unit
Has Max Has Max Has Max Has Max
A 3 ] Al 4 ] A 4 8 A 4 9
B 2 4 B 2 4 B 4 4 B -] -
c 2 7 c 2 7 c 2 7 c 2 7
Free: 3 Free: 2 Free: 0 Free: 4
(2) (b) (©) (d)

Demonstration that the state in b is not safe

THE UMIVERSITY O
NEW SOUTH WALES

COMP3231 04s1 35

_E Two process resource trajectories

NEW SOUTH WALES

Deadlock Avoidance
Resource Trajectories

® y (Both processes
finished)

Printer —————————=

Plotier

COMP3231 04s1 32

¥

Safe and Unsafe States

Note: We have 10 units
of the resource

Has Max Has Max Has Max Has Max Has Max
A a 9 A 3 9 A 3 9 A 3 9 A 3 9
Bl2|4 B4 4 Blo| - Blo| - BloO =
cla|v cla2|7v cla2]7 cl7]|7 cloj-

Free:3 Free: 1 Frea:5 Free:0 Free: 7

Demonstration that the state in (a) is safe

THE UMIVERSITY O

COMP3231 04s1 34
BEW SOLUTH WALES

THE UMIVERSITY O
NEW SOUTH WALES

Safe and Unsafe State

Unsafe states are not necessarily deadlocked

— With a lucky sequence, all process may complete

— However, we cannot guarantee that they will
complete (not deadlock)

Safe states guarantee we will eventually
complete all processes

Deadlock avoidance algorithm
— Only allow safe states

COMP3231 04s1 36




Bankers Algorithm

* Modelled on a Banker with Customers
— The banker has a limited amount of money to loan customers
+ Limited number of resources
— Each customer can borrow money up to the customer’s credit
limit
« Maximum number of resources required
+ Basic Idea
— Keep the bank in a safe state

+ So all customers are happy even if they all request to borrow up to
their credit limit at the same time.

+ A state is safe if we can satisfy some customer.
— Customers wishing to borrow such that the bank would enter an
unsafe state must wait until somebody else repays their loan
such that the the transaction becomes safe.

-E THE UISIVERSITY O COMP3231 04s1 37
MEW SOUTH WALES

Banker's Algorithm for Multiple Resources

& §‘i°a ol o &5 &

F o f N FoP sL
TS S ECFESLS
Al3fol1]1 Aj1|1]o]o E = (6342)
glo]1]o]o slof1]1]2] Riiom)
Cli1j1|1]o Ccla|t1|o]o
D110 Djojoft1]o
Ejojofojo Eja|1]1]0
Resources assigned Resources still needed

Example of banker's algorithm with multiple
resources

-E THE UISIVERSITY O COMP3231 04s1 39
MEW SOUTH WALES

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
A 4] B A 1 B A 1 [
B 1] 5 B 1 5 B 2 5
[ 1] 4 c 2 4 c 2 4
D o 7 D 4 7 D 4 7
Free: 10 Free: 2 Free: 1
(2) (b) (©
» Three resource allocation states
— safe
— safe
THE USIVERSITY O3f - unsafeCOMP3231 04s1 38
E NEW SOLITH WALLS

Deadlock Prevention
Attacking the Mutual Exclusion Condition
* Not feasible in general

— Some devices/resource are intrinsically not
shareable.

-E THE URNIVERSITY (3 COMP3231 04s1 41
MEW SOUTH WALES

Bankers Algorithm is used
rarely in practice

* |t is difficult (sometime impossible) to know
in advance
— the resources a process will require
—the number of processes in a dynamic system

-E THE UISIVERSITY O COMP3231 04s1 40
MEW SOUTH WALES

Attacking the Hold and Wait
Condition

* Require processes to request resources before
starting

— a process never has to wait for what it needs

* Problems
— may not know required resources at start of run
— also ties up resources other processes could be using

» Variation:
— process must give up all resources
— then request all immediately needed

-E THE URNIVERSITY (3 COMP3231 04s1 42
MEW SOUTH WALES




Attacking the No Preemption Condition

* This is not a viable option
» Consider a process given the printer
— halfway through its job

— now forcibly take away printer
-n??

E THE UISIVERSITY O COMP3231 04s1
MEW SOUTH WALES

Attacking the Circular Wait

Condition
» The displayed deadlock
cannot happen
— If A requires 1, it must . .
acquire it before

acquiring 2 \
— Note: If B has 1, all

higher numbered

resources must be free or A B

held by processes who

doesn’t need 1

» Resources ordering is a
common technique in
.practice!!!l!

UASIVERSITY C3F COMP3231 04s1 45
MEW SOUTH WALES

Nonresource Deadlocks

» Possible for two processes to deadlock

— each is waiting for the other to do some
task

» Can happen with semaphores

— each process required to do a down() on
two semaphores (mutex and another)

— if done in wrong order, deadlock results

E THE URNIVERSITY (3 COMP3231 04s1 47
MEW SOUTH WALES

Attacking the Circular Wait Condition

1. Imagesetter ® e

2. Scanner
3. Plotter

4. Tape drive
5. CD Rom drive n
(a) (b)

» Normally ordered resources
» A resource graph

E THE UISIVERSITY O COMP3231 04s1 44
MEW SOUTH WALES

Summary of approaches to

deadlock prevention
Condition Approach
* Mutual Exclusion » Not feasible
* Hold and Wait * Request resources
initially
+ Take resources away
» Order resources

* No Preemption
« Circular Wait

E THE UISIVERSITY O COMP3231 04s1 46
MEW SOUTH WALES

Starvation

« Example: An algorithm to allocate a resource
— may be to give to shortest job first

» Works great for multiple short jobs in a system

* May cause long job to be postponed indefinitely
— even though not blocked

Solution:
— First-come, first-serve policy

E THE URNIVERSITY (3 COMP3231 04s1 48
MEW SOUTH WALES




